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Abstract 
This paper examines extensions of an iterative method for inverse evaluation of the source 

function for two elliptic systems. The method begins with a starting value for the 

undetermined source. Next, a background field and equations for the error field are 

obtained. 2-D domains are considered. This method is suitable for Helmholtz and Poisson 

operators. In the presence of finite-difference grid resolution, a varying amount of boundary 

data, and methods of filtering the noise in the boundary data and the noise intensity of the 

boundary data, the performance, accuracy, and iteration count of the algorithm are 

investigated.  
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Introduction 
 

The method is a numerical method to determine the source function for an elliptic system in two and three 

dimensions (1). This problem occurs in the general area of non-invasive imaging techniques that have 

noticed an expanded amount of utility and applications in various fields of sciences. For example, in diffuse 

optical tomography (2). One seeks to investigate neuronal activity in the living human brain. In 

bioluminescence imaging, biological entities (e.g. tumor cells) are tagged with luciferase enzymes and 

implanted in a small animal (3).  

 

In this paper, the convergence of the method with the grid sizes is examined. Also, some parts of the 

boundary are not accessible, and it is impossible to measure either flux (or Neumann boundary) and 

Dirichlet conditions at these parts of the boundaries are assumed. The inverse source problem method in 

(1) with respect to missing some data at the boundaries (limited number of the sensors at the boundaries) 

and compare to the case where the number of the sensors can be assumed unlimited is studied. The missing 

data at the boundaries are recovered by fit a polynomial of degree n to the available data. In Section 2, the 
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algorithm for recovering the source of the Poisson equation in the two-dimensional domain is briefly 

introduced. In section 3, the method for a 2-D domain is developed. In section 4, the grid size to study the 

convergence of the method is varied. Then the inverse source method with no noisy data, an unlimited 

number of sensors, and the method limited number of sensors at the boundaries is examined (4). Lastly, the 

method with different filtering noisy data methods was examined. 

 

Convergence with grid size and iteration 

 

Convergence with grid size and iteration 

Consider an inverse source problem in a two-dimensional domain. Assume that the actual source term in 

Eq. [1] is given by 

 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 1 + 𝑔(𝑥)𝑓(𝑦)      in  Ω, [1] 

 

where a unit square and the variable u(x) can be the electric potential or the material temperature. The 

boundary is accessible, and it is possible to measure both flux (or Neumann boundary) and Dirichlet 

conditions on the boundary 𝜕Ω. Starting with an assumed value for the source term 1 + 𝑔(𝑥)𝑓(𝑦).  

 

 𝑔(𝑥)𝑓(𝑦) = [1 + exp (
(𝑥−0.3)4

0.00001
)] [1 + 2exp (

(𝑦−0.65)4

0.00001
)].  [2] 

 

In this section, the convergence of the method with grid size is studied. As is expected the convergence of 

the method is improving as the grid size is decreased. Because the error of the approximation by finite 

differences is proportional to the grid size. Figure 1 shows the reduction of the source error given by [2-3] 

with different grid sizes. The convergence rate of the source error is increasing as the grid sizes decreasing.  

 

 𝐸𝑟𝑟𝑜𝑟1 = ∫ [𝑔(𝑥)𝑓(𝑦) − 𝑔(𝑥)𝑓(𝑦)]
2

Ω

 ,  [3] 

 𝐸𝑟𝑟𝑜𝑟2 = ∫ [∇𝑛(𝑢(𝐱)) − ∇𝑛( 𝑢̂(𝐱))]2
Ω

, [4] 

 

Where error 1 is to study the error in the recovered unknown function. Error 2 is to study the difference 

between the given data, and the calculated value at a given iteration. Figure 2 shows the reduction of the 

error 2. The figure, 2 shows the reduction of error between the given data at the boundaries and the 

computed values by this method.  

The convergence of the recovered functions in the x-direction and the y-direction with different grid sizes 

are shown in Figures 3 and 4, respectively. Decreasing the grid sizes gives a close approximation for the 

unknown sources. 
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The inverse source method with no noise data and a limited number of sensors 

Consider an inverse source problem in a two-dimensional domain. Assume that the actual source term in 

Eq. [1] is given by Eq. [2]. 

The method with a limited number of sensors in two cases. First, when the collected data on one side is 

78% of the full data. Two experiments have been done one at x=1, and another at y=1. Second, when the 

collected data on all sides are 78% of the full data is studied.  

  First missing data on one side.  

The limitations of measuring the 𝑢𝑥 at the boundaries lead to missing data. The missing data is estimated 

by using a 10-degree polynomial. 
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Missing data on one side at 𝒙 = 𝟏  

Figure 5 shows the full collected data and 78% of the full data after the estimation of the missing data is 

made.  

 

Figure 6 shows the reduction in error 1 for the full collected data and 78% of the full data.  

Figure 7 shows the reduction in error 2 for the full collected data and 78% of the full data. 
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Figures 8 and 9 show the recovered functions after a few iterations with 78% of the full data and full data 

at x=1 and compare them to the actual source functions. 

 

 
 

Figure 10 shows the recovered source function after 35 iterations with 78% of full data at x=1. Next, the 

method when there are limited numbers of sensors at y=1 is studied. 

 

 
 

Missing data on one side at y=1 
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Figure 11 shows the full collected data and 78% of the full data after the estimation of the missing data is 

made. 

 

Figure 12 shows the reduction in error 1 for the full collected data and 78% of the full data. 

Figure 13 shows the reduction in error 2 for the full collected data and 78% of the full data. 

 
 

Figures 14 and 15 show the recovered functions after a few iterations with 78% of the full data and full data 

at y=1 and compare them to the actual source functions.  

 

https://www.raftpubs.com/


LJBS, 2021                                       https://www.raftpubs.com/ 

                                                                                                                                              
 

   Volume 5 | Issue 2 | pg. 131 
 

 
 

Figure 16 shows the recovered source function after 35 iterations with 78% of full data at y=1. 

 

 
Second missing data on all sides 
 

Figures 17-20 show the full collected data and 78% of the full data for all sides after the estimation of the 

missing data is made. 
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Figures 21, 22 and 23 show the estimation of 75%, 50%, and 25% missing data, respectively at x=0.  

 

 

https://www.raftpubs.com/


LJBS, 2021                                       https://www.raftpubs.com/ 

                                                                                                                                              
 

   Volume 5 | Issue 2 | pg. 133 
 

 
Figures 24, 25, and 34 show the estimation of 75%, 50%, and 22% missing data, respectively at y=0.  
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Figures 27, 28, and 29 show the estimation of 75%, 50%, and 25% missing data, respectively at x=1.  

 

 
Figures 30, 3, and 32 show the estimation of 75%, 50%, and 25% missing data, respectively at y=1.  
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Figures 32-36 show the full collected data and the 78%, 50%, and 25% of the full data for all sides after the 

estimation of the missing data is made. 
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Figure 37 shows the reduction in the source error for the full collected data and 78%, 50%, and 25% of the 

full data for all sides. Here the source error has almost the same convergence rate, but the initial error values 

are increasing as the missing data percentage is increasing.  

 

Figure 38 shows the reduction in normal flux error for full collected data and 78% of the full data for all 

sides. Here is for missing 50% and 75% of data there is initially overshooting in the normal flux error and 

then the convergence rates of this error become the same as 78% of the full data and full data. 

 

 
Figures 39 and 40 show the recovered functions after 35 iterations with 78% of the full data and full data 

at all sides and compare them to the actual source functions. Here, the method when the missing data at all 

the boundaries then according to equations 5 and 17 the estimation of the missing data will affect the 

correction term 𝛿(𝑦) and 𝜎(𝑥) therefore the recovered function in y- direction and x-direction is studied. 
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The inverse source method with different filtering noisy data methods 

 

Briefly, the algorithm with two different methods for filtering the noisy data has been examined. Assuming 

that the data is noisy, and the signal ratio noise is 5%, the two methods are smooth noisy data and fitting a 

curved polynomial to noisy data method (5, 6). 

 

Smooth noisy data 

In this subsection, before using the data Savitzky-Golay filter is performed to smooth out the data. Basically, 

Savitzky-Golay filtering can be thought of as a generalized moving average (7). To filter data by this method 

a built-in function in MatLab called smooth data is used (8).  

Figures 41-44 show the filtering data after performing the Savitzky-Golay filter. 

 

 
Fitting curved polynomial to noisy data method. 

The objective of curve fitting is to find the parameters of a mathematical model that describes a set of 

(usually noisy) data in a way that minimizes the difference between the model and the data. The most 

common approach is the “linear least squares” method, also called” polynomial least squares” (9).  
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Using a built-in function in MatLab called poly fit to filter data by this method. Figures 41-44  show the 

filtering data after performing a fitting curved polynomial filter. 

Figures 45 and 46 show that the functions of the recovering source with the smooth noisy data filter are 

better than when the fitting curved polynomial filter is used. Because the Savitzky-Golay smoothing filter 

is a filter that essentially performs a local polynomial regression but a fitting curved polynomial filter 

performs a global polynomial regression. These reasons can clearly be seen in Figures 41- 44 

 

 
Conclusion 
  
The inverse source problem method for the two-dimensional Poisson equation has been considered. First, 

the convergence of the method with grid size has been inspected. The convergence of the method is 

improving as the grid size is decreased. 

 

Second, examining the method when some parts of the boundary are not accessible. Using a simple method 

to recover the missing data, the unknown functions can be recovered even there is a limited number of 

sensors on the boundaries. In the case of missing data on one side, the method is working better than the 

missing data on all sides. If the missing data is at all sides of the domain, the method can recover the 

location of the source. Because missing data at all sides will affect the correction terms in x and y directions 

therefor the recovered source functions in x and y directions. This issue might be solved by using a more 

accurate method to estimate the missing data and changing the positive scalar β.  

 

To examine the method, two different definitions for the reduction of the error are used. The reduction of 

the source error and normal flux error curves will converge almost at the same number of iterations for 

both cases (missing data at one side or all sides). Therefore, it can be concluded that the convergence rate 

of the errors is almost the same for full data and missing data at the boundaries cases. 

 

Third, the results of the methods for two different methods of filtering the noisy data are inspected. The 

results show that using smooth the noisy data the recovered functions will be better than using fit a 

polynomial to the noise data. 
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