
 Software driven approach for Embedded Devices
DOI: https://doi.org/10.36811/ojeee.2020.110001 OJEEE: March-2020: Page No: 01-08

 Page: 1

www.raftpubs.com

Open Journal of Electrical and Electronic Engineering
Short Communication Open Access

Software driven approach for Embedded Devices
Hrvoje Dodig

*
, Joško Šoda and Ivana Golub

University of Split - Department of Maritime Electrical and Information Technology, Faculty of
Maritime Studies, Ruđera Boškovića 37, Split, Croatia

*Corresponding Author: Hrvoje Dodig, University of Split - Department of Maritime Electrical and

Information Technology, Faculty of Maritime Studies, Ruđera Boškovića 37, Split, Croatia, Email:
hdodig@pfst.hr

 ORCID: Hrvoje Dodig: https://orcid.org/0000-0001-7910-9583
 Joško Šoda: https://orcid.org/0000-0002-5825-8026

 Ivana Golub: https://orcid.org/0000-0002-1420-3197

Received Date: Feb 24, 2020 / Accepted Date: Mar 03, 2020/ Published Date: Mar 05, 2020

Abstract
This paper presents the possible new design paradigm that emerged during the author’s design of an

embedded communication device for Croatian Navy. Prior to codesign techniques that emerged in
1990's the traditional embedded design methodology involved problem specification, separate

hardware and software specification, integration, and the system test as the final step in the embedded

device design. Such an approach can potentially lead to numerous iterations and can increase the cost
of the development cycle because there are no guarantees that separately developed software will

work well with separately designed hardware. Codesign techniques, on the other hand, delay the

decision to which components of hardware or software will be used for embedded system until late
stages of embedded design process. At the time of the invention of the codesign techniques this

seemed as perfectly balanced approach between design of hardware and software spending about

equal time in the design of both hardware and software components. However, since the 1990’s the

design of embedded devices has changed; nowadays the most working hours are spent in the design
of software while the design of hardware requires less working hours due to extensive choice of IC’s

and supporting electronic circuits, and due to advancement of EDA software tools. In favor of the

software-driven approach presented in this paper, it should be noted that nowadays, there is a large
number of freely-available software components and libraries which, if properly utilized, greatly

expedite the development of the software part of the embedded system design. Therefore, perhaps it

is a suitable time for a new paradigm shift where the design of the hardware is completely dictated

by the design of software, and the design of the hardware is simply the matter of selecting proper
IC’s and other electronic circuitry that supports the software. In this paper, we present an example of

the embedded design using this software-driven design strategy. By the end of this paper, it is shown

that software-driven design not only allows the rapid prototyping of embedded devices, but it reduces
the possibility of design errors, as well.

Keywords: Embedded design; Hardware-software codesign; Software driven design; ARM

technology

https://doi.org/10.36811/ojeee.2020.110001
http://www.raftpubs.com/
mailto:hdodig@pfst.hr
https://orcid.org/0000-0001-7910-9583
https://orcid.org/0000-0002-5825-8026
https://orcid.org/0000-0002-1420-3197

 Software driven approach for Embedded Devices
DOI: https://doi.org/10.36811/ojeee.2020.110001 OJEEE: March-2020: Page No: 01-08

 Page: 2

www.raftpubs.com

Cite this article as: Hrvoje Dodig, Joško Šoda, Ivana Golub. 2020. Software driven approach for

Embedded Devices. OJEEE. 1: 01-08.

Copyright: This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited. Copyright © 2020; Hrvoje Dodig

Introduction

An embedded system is the special purpose

computer system used for single purpose, such

as domestic appliance, parking car counting
device or a smart phone. Embedded system can

even be the subsystem of the larger system such

as medical device or a number of embedded
systems can be interconnected such as in

shipborne communication system.

Prior to codesign techniques the traditional
embedded design methodology involved

problem specification, separate hardware and

software specification, and finally the

integration and the system test. Such approach
did not allow, for example, early fault

identification of the system’s architecture.

Furthermore, some hardware tests could not be
performed without fully functioning software.

This led to potentially many iterations of

hardware development until the product is in
the final production stage.

In early 1990’s the hardware/software codesign

emerged as a new discipline for embedded
system design [1]. Because of the technological

advances an adoption of codesign techniques

became the necessary tool for embedded system
companies. Codesign techniques involve steps

such as specification, which is a common

specification that specifies both hardware and

software components. Other steps in codesign
are synthesis and convexification where

software and hardware are tested

simultaneously to verify both hardware and

software components.

In the embedded system design the larger

portion of time is allocated to the development
of software than it is to the design of the

hardware [2]. Furthermore, the software design

tends to be more complicated then hardware

design because of the required functionality.

This is especially true when GUI (graphical
user interface) design is required. The hardware

design, in most cases, relies simply on selecting

the appropriate components to achieve software
design requirements. In today’s IC market the

electronic component manufacturers provide

IC’s with almost any standard functionality.

Furthermore, nowadays, there is a large number

of software tools available and variety of code

libraries and code elements that can be reused.

Thus, the right combination of software tools
can potentially lead to rapid development of

product and could lead to better product in

terms of reliability and quality. The question
that really needs to be answered here is what

components (IC’s) do support the software

components and libraries?

For the afore mentioned reasons, instead of

codesign technique, in this paper we present the

software driven embedded design of shipborne

communication system. We define the software
driven embedded design as the design

methodology that combines the hardware and

software in such way that software
requirements dictate the final decision on the

hardware components.

Communication system requirements

and design

In maritime design of shipborne

communication device many considerations
that are related to the operating environment of

the device had to be taken into account. For

example, the display of the device had to

support low light conditions such as in engine
room and it had to be visible while exposed to

direct sunlight. Because the engine room is

https://doi.org/10.36811/ojeee.2020.110001
http://www.raftpubs.com/

 Software driven approach for Embedded Devices
DOI: https://doi.org/10.36811/ojeee.2020.110001 OJEEE: March-2020: Page No: 01-08

 Page: 3

www.raftpubs.com

noisy environment the care had to be taken in

order to discriminate the human voice from the

environment sounds. The design had to be
electrically and mechanically robust in order to

support conditions with increased salinity and

temperature. Moreover, because of the cost
constraint relatively inexpensive display is used

and user interface (UI) system called µWin was

developed to support such non-standard
display. At the same time the system had to

encrypt/decrypt large number of UDP packets

while simultaneously processing microphone

input and speaker output. For all these reasons,
the software design in this case is order of

magnitude more complicated than hardware

design. Therefore, we have decided to take the
software driven approach in our development

which in turn dictates the hardware

development.

Functional Requirements on the Ship's

Communication Device

The functional concept of the shipborne

communication device is shown in figure 1. At
the core of the embedded system there is a CPU

powerful enough to deliver the desired level of

functionality. Because the device might be
installed outside of ship's chambers, one of the

important requirements is that display should be

visible in sunlight conditions, therefore,

limiting the choice of displays to OLED
technology.

Figure 1: The functional layout of the

communication device.

The device is intended to be connected to ship's

LAN network which offers an opportunity to
simplify the device's power system and the

installation of the device by utilizing ethernet's

PoE (Power over Ethernet) capability. This

approach effectively eliminated the need for

device's batteries, for wall electric power socket

and for device's power supply circuitry.

Because the communication device is intended

to operate in noisy and dark environment of the
engine room there are several considerations to

take into account: first in order to enhance the

visibility of display in the engine room
conditions the additional requirement for the

display is to have back-light functionality.

Second, because of noisy environment and

because the engineers in engine room should
operate the device hands-free, we have added

wireless USB-Nano headphones with built-in

noise cancellation. Third, again because of the
noisy and dark engine room environment we

have decided to add siren to visually alert the

crew, and the possibility of external loud
speaker for those occasions when ship's captain

or officer need to speak to several crew

members at once.

The network layer is another important aspect
to consider since the communication device is

intended to operate as VoIP (Voice over IP)

device which is connected via LAN to ship's
communication central. Furthermore, because

the requirement for the device is to support one-

to-one conversation, one-to-many

conversation, group conversations and
conference calls each of these functionalities

had to be carefully implemented. Related to

this, since the communication device is
currently installed on operating ships the

special care had to be taken about the network

security and packet encryption.

Finally, it was our intent to make the device

user friendly and flexible and to allow some

degree of user's custom ability. This means that

to some degree and with ship's officer
permission, the crew members are allowed to

change ring tones, the layout of certain menus,

to add other crew members to phone book and
similar and to play the background music. All

this information is stored on SD card which

serves two purposed: first the crew's
customization information is stored on SD card

and second it allows the software updates since

https://doi.org/10.36811/ojeee.2020.110001
http://www.raftpubs.com/

 Software driven approach for Embedded Devices
DOI: https://doi.org/10.36811/ojeee.2020.110001 OJEEE: March-2020: Page No: 01-08

 Page: 4

www.raftpubs.com

the parts of the operating system and software

is stored on SD card. Furthermore, in the

unlikely event of device's fault some important
service data is stored on SD card which allows

the service engineers to inspect this data and to

detect the cause of the fault.

Software System Layout

The general layout of software components for
ship’s interphone system design is shown in

figure 2, where software components are shown

in top-down order according to the level of

complexity and interdependency. Hardware is
mentioned simply to clarify the necessity of

hardware abstraction layer (HAL) which is the

software component, in most cases, available
from CPU manufacturer. Because of the

situation on the market, our goal was to reuse

the code components which are freely available
from various sources. Because one of the

constraints of the project was to reduce the cost,

we decided to use Free RTOS because we only

needed support for minimal threading model.
Furthermore, the minimum version of Free

RTOS takes only 86 bytes of RAM, therefore

too advanced CPU should not be required.

Figure 2: The layout of software components
of embedded interphone design. Free software

available from different sources is marked

with green color.

In the design of software components there is a

need for standard data structures, containers

and algorithms such as lists, queues, stacks,

trees and networks. This is especially true in
GUI design where menu’s, drop-down lists are

placed in tree structures. Thus, in order to

expedite the production of ship’s intercom

system the natural choice to support these
structures was STL. The standard template

library (STL) is the set of ready-to-use

templatized standard algorithms, containers and
functionalities [3] and in order for STL to work

the programming language must be C++. This

placed another restriction on the choice of CPU,
that is, the processor that was at the core of our

embedded communication system design had to

be selected with the aim to support C++

programming language. Since nowadays most
of the ARM processors support GCC for ARM

which is C++ compiler, the natural choice of

CPU was the one that supports ARM

technology.

In figure (2) the schematic representation of the

software system is shown where the parts that
come from original equipment manufacturer

(OEM) are shown in purple color, software

components that are freely available from the

market are shown in green color and software
components that were missing and needed in-

house development are marked with yellow

color. On top of previously mentioned software
layers comes the application layer which is

responsible for integration and control of all

these components and for user interface and

ship's intercom functionality. The Figure (2)
was created after market analysis which

software components are freely available and

easy to integrate into ship's intercom system
and one of its purposes is to serve as guideline

for later hardware component selection.

Thus, after analysis, the following software
components had to be developed to ensure the

intended functionality of the communication

device:

• Microphone driver - the driver that converts

analog microphone sound signals to digital
signals with acceptable sampling frequency

and with enough quantization levels to

ensure the audio quality. Furthermore, to
ensure the voice quality the device is

required to have two microphones for stereo

sound.

https://doi.org/10.36811/ojeee.2020.110001
http://www.raftpubs.com/

 Software driven approach for Embedded Devices
DOI: https://doi.org/10.36811/ojeee.2020.110001 OJEEE: March-2020: Page No: 01-08

 Page: 5

www.raftpubs.com

• Sound driver - this is two channel stereo

driver which is responsible for reproduction

of voice audio at range of audio frequencies.

• Display driver - displays the characters on
the screen at desired pixel location, displays

the rudimental 2D graphics such as lines,

circles, rectangles and round rectangles and

allows the bitmap drawing. In addition, it
regulates the level of backlight.

• Memory management - since for small

embedded systems the available RAM is

limited resource one of the main concerns
was to avoid memory fragmentation that

naturally occurs when memory is allocated

dynamically. Memory fragmentation was

completely eliminated by employing some
special memory management algorithms.

• Audio Code/Decode - this driver is

responsible for decoding encrypted audio

that comes from LAN network and to
provide the audio data to sound driver at

required playback frequency. Furthermore,

it codes the data from microphone and it
prepares and encrypts the data packets for

transmission over the LAN network.

• UI Framework (µWin) - this driver is

essentially the windows management

system similar to windows management
system on commercial operating systems

such as MS Windows. Its main task is to

maintain z-order, perform windows
clipping, windows drawing by

implementing painter's algorithm and to

respond to external events such as keyboard
or inbound call.

Due to large number of tasks that are required

to be performed simultaneously the processor to
be selected is required to support the large

number of DMA (Direct Memory Access)

channels. If the large number of DMA channels
are supported in hardware then the processor

core would be relieved of tasks such as: copying

the buffers to audio playback ship, copying the

data from microphone to audio buffer, LAN
packet retrieval, writing buffers to display and

similar. For example, if DMA is used then the

task of drawing the pixel to the display is
reduced to the task of writing the data to

designated memory area used for DMA access

to display. Finally, the user interaction with

keyboard is intended to be implemented via
standard interrupt mechanism available on all

modern processors.

Hardware component selection

Due to software requirements and analysis

presented in previous section the natural choice

for core processor is processor based on ARM
technology. The ARM technology is the set of

processor architecture guidelines that are

provided by Arm Holdings Ltd. in order to
unify processor architecture and instruction sets

across various processor manufacturers [4]. The

instruction set unification came in the form of
Thumb and Thumb-2 instruction sets [5]. This

approach guarantees the code compatibility and

reusability on processors that come from

different manufacturers and these guidelines
are issued almost yearly. Most of the main

processor manufacturers have adopted this

standard and nowadays it is estimated that
majority of processors on the market support

ARM technology which evaluates to about 15

billion units sold only in 2015 [6]. This means
that nowadays the ARM technology is present

in most of the mobile phones (especially those

based on Android), tablets, television sets,

computers, home appliances and similar.

One interesting consequence of this

architecture unification is that the compiler

tools are unified as well. For example, GCC for
ARM is freely available compiler for ARM and

it was used in this project for software

development. Furthermore, the debugging and

programming of ARM processors was unified
as well. In the old days, the code developer for

microprocessor, in order to program effectively

had to buy an expensive processor emulator for
particular microprocessor device and then

develop and debug the code on that emulator

(for example with Keil µVision). Then the
developer had to use chip programmatic device

(which also could be expensive) to program that

particular microprocessor chip. The need for

this emulation software was effectively
eliminated with the emergence of ARM

technology because ARM technology provides

https://doi.org/10.36811/ojeee.2020.110001
http://www.raftpubs.com/

 Software driven approach for Embedded Devices
DOI: https://doi.org/10.36811/ojeee.2020.110001 OJEEE: March-2020: Page No: 01-08

 Page: 6

www.raftpubs.com

simple unified hardware interface for

programming and debugging called JTAG

interface. The hardware debugging removed the
need for expensive emulator software because

all the debugging, setting break points,

following the code flow is now done in
hardware. The task of GUI debugger is now to

simply follow the code flow and to

communicate via JTAG interface. This allowed
for free ARM debuggers such as System

Workbench for STM32 which are au par with

commercial counterparts such as Keil µVision.

Additionally, because the GCC for ARM was
chosen as the compiler tool of choice the access

for code and standard algorithm libraries such

as STL is guaranteed. All of these reasons
amounted to decision that processor based on

ARM technology is our processor of choice.

Before the emergence of ARM technology, the
microprocessors came in two flavors: central

processing units (CPU's) and microcontrollers

[7]. The purpose of the CPU is to execute

program code and to communicate with
peripherals such as USB, RS232, A/D or D/A

module, etc. [8]. On the other hand,

microcontrollers are small devices which were
able to execute the code, however,

microcontrollers had peripherals integrated, as

well [9,10]. This means that on the single chip

both CPU and peripherals such as USB, RS232
were integrated together. For this reason, the

microcontrollers are referred to as SoC or

system on chip. Of course, this integration of
CPU and peripherals came at the price of lower

CPU processing capabilities and the intent of

the microcontroller is to operate in small

embedded devices such as home appliances.

With the emergence of ARM technology, the

need for microcontrollers was recognized and

this gave birth to ARM Cortex M
microprocessors. The Cortex M series of ARM

microprocessors are packed with peripherals

such as: LAN, CAN, RS232, IrDA, A/D, D/A,
USB 2.0, USB 3.0, TFT display support, SD

card interface, CCD camera interface and

similar. The first Cortex M was Cortex M-0
while most modern ARM Cortex M

microprocessor are designated as ARM Cortex

M-7.

Since our communication device was designed

with the intent to be relatively cheap ARM

Cortex M series was natural choice for device's
development because it allows to reduce the

number of other electronic components (i.e. for

USB and LAN communications etc.). At the
time of device's design (2015) an award

winning STM32F4 processor caught our

attention: it was 32bit ARM Cortex M4
processor, packed with various peripherals and

with the full range of freely available software

ecosystem such as peripheral driver’s graphics

drivers and similar. Its DMA system was very
simple to set up by simply designating the

region of memory used for DMA and,

furthermore, almost all peripheral devices could
be connected to DMA (such as microphone,

sound codec, graphic display, LAN, USB). This

alleviates the processing burden from
microprocessor allowing it to spend the most of

the processing time executing application stack

(GUI, user requests etc.). On top of this,

STM32F4 is equipped with floating point unit,
runs at 180 MHz and is equipped with DSP

instruction set, hardware calendar (required to

display device's time) and had remarkable 225

DMIPS instruction through output.

Once the core CPU for ship's communication

device was selected using the software criteria

the remaining hardware components had to be
chosen. This was relatively straightforward

task, for example, the chosen sound codec was

stereo codec WM8731 from Wolfson
microelectronics. The chip came with

integrated headphone driver, stereo output to

speakers and stereo input from microphone.
Since one of the requirements for software

sound and microphone driver was

programmable sampling/playback rate

WM8731 was the codec of the choice because
it supported this functionality in hardware for

audio sampling frequencies from 8kHz to

96kHz. With WM8731 the sampling rate can be
set simply by setting appropriate chip's register.

Furthermore, one of the requirements for

communication device was to have the mute
button. Again, WM8731was chip of choice

because muting is controlled by register and the

task of muting/unmuting is reduced to set or

https://doi.org/10.36811/ojeee.2020.110001
http://www.raftpubs.com/

 Software driven approach for Embedded Devices
DOI: https://doi.org/10.36811/ojeee.2020.110001 OJEEE: March-2020: Page No: 01-08

 Page: 7

www.raftpubs.com

clear appropriate bit in the register.

Furthermore, WM8731 works seamlessly with

SMT32F4 DMA buffers using I2S (Inter-IC
sound) which is supported in hardware by

STM32F4 microprocessor. The microphone's

used were electret condenser microphone
CMR-2747PB-A coupled to low noise audio

amplifier MCP6021 in order to match the

microphone output impedance, therefore,

minimizing the signal loss from microphone.

Another important point in hardware

development of the ship's communication

device was interfacing LAN to STM32F4.
Although STM32F4 provides ethernet interface

we still had to adjust electrical levels of ethernet

signaling in order for core processor to receive
and send UDP packets required for VoIP. This

was achieved with DP83848 ethernet

transceiver from Texas Instruments, the chip
which adapts the physical level of LAN signals

to the expected signal levels from core

processor which are expected to be at 3.3V.

Furthermore, because the communication
device was expected to operate in harsh

environment, that is, increased temperature in

the engine room and in cold environments if
placed on outside areas of the ship the military

grade components were selected to ensure

device's functionality in harsh environments.

The final product, the PCB of which is shown
in figure (3), was tested in climate chambers

and for water-tightness under increased

pressure conditions.

Conclusion

In this paper we have presented the design

process of ship's communication device, the
development of which was almost completely

driven by the software. By designing the

software functionalities first and by making use
of ARM technology we were able to start the

software design process long before the

electronic components of the device were
selected. The advantage of such design process

is that the waiting time for hardware component

acquisition and assembly is eliminated and this

time is allocated into software design process
which takes significantly more time than the

hardware design. Once the core processor was

selected to meet the requirements of the

software design the choice of other components
was dictated mostly by the core processor

(which again was chosen by software) and

software requirements. This approach allowed
us to start software development cycle before-

hand and therefore reduce overall product

design time. The approach of software design
first was greatly supported by the availability of

free software components and it would

probably not be possible in 90's and 80's.

Finally, the cost of the design in terms of the
equipment and in terms of developer software

tools was significantly reduced by choosing

freely available software tools and by choosing

appropriate technologies.

Figure 3: Finished PCB artwork of ship's

communication device.

Refrences

1. Teich J. 2012. Hardware/Software
Codesign: The Past, the Present and

Predicting the Future. Proceedings of the

IEEE. 1411-1430. Ref.:

https://bit.ly/2PFtfZu

https://doi.org/10.36811/ojeee.2020.110001
http://www.raftpubs.com/
https://bit.ly/2PFtfZu

 Software driven approach for Embedded Devices
DOI: https://doi.org/10.36811/ojeee.2020.110001 OJEEE: March-2020: Page No: 01-08

 Page: 8

www.raftpubs.com

2. Kraeling M, Oshana R. 2013. Software

Engineering for Embedded Systems, 2nd ed,

Waltham, USA: Elsevier. Ref.:
https://bit.ly/3amQRdl

3. Musser DR, Derge DJ, Sanni A. 2009. STL

Tutorial and Reference Guide: C++
Programming with the Standard Template

Library, 3rd ed. New York: Addison-

Wesley. Ref.: https://amzn.to/3aoj6sm
4. Sloss A, Symes D, Wright C. 2004. ARM

System Developer's Guide, New York:

Morgan Kauffman. Ref.:

https://bit.ly/2PFtEuY
5. Seal D. 2000. ARM Architecture Reference

Manual, 2nd ed., New York:Addison-

Wesley. Ref.: https://amzn.to/2IdeGbN
6. ARM Holdings Investor Relations, The

financial reports of ARM Holdings,

available online at:
https://www.arm.com/company/investors/f

inancial-results, retrieved 15. March 2015.

7. Betker MR, Fernando JS, Whalen SP.

1997. The History of the Microprocessor
for Bell Labs Technical Journal. Autumn.

29-56. Ref.: https://bit.ly/3cjN1Ua

8. Alpert D, Avnon D. 1993. Architecture of
the Pentium Microprocessor for IEEE

Micro. 13: 11-12.

9. Mazidi MA, Mazidi JG, McKinlay RD.

2006. The 8051 Microcontroller and
Embedded Systems, New

York:Pearson/Prentice Hall.

10. Uma RDK. 2010. The 8051
Microcontrollers: Architecture,

Programming & Applications, New York:

Pearson.

https://doi.org/10.36811/ojeee.2020.110001
http://www.raftpubs.com/
https://bit.ly/3amQRdl
https://amzn.to/3aoj6sm
https://bit.ly/2PFtEuY
https://amzn.to/2IdeGbN
https://bit.ly/3cjN1Ua

