

**Evasion in Cancer** 

**DOI:** <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

# Instant Journal of Hematology and Oncology

**Review Article** 

**Open Access** 

Mechanistic Basis and Therapeutic Strategies in Immune Evasion in

Cancer

# Alireza Heidari<sup>1,2,3,4\*</sup>, Elena Locci<sup>1,2,3</sup> and Silvia Raymond<sup>1,2,3</sup>

<sup>1</sup>Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA <sup>2</sup>BioSpectroscopy Core Research Laboratory, California South University, 14731 Comet St. Irvine, CA 92604, USA

<sup>3</sup>Cancer Research Institute (CRI), California South University, 14731 Comet St. Irvine, CA 92604, USA

<sup>4</sup>American International Standards Institute, Irvine, CA 3800, USA

\*Corresponding Author: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA, Email: <u>Scholar.Researcher.Scientist@gmail.com</u>; <u>Alireza.Heidari@calsu.us; Central@aisi-usa.org</u>

#### Received Date: Sep 29, 2021 / Accepted Date: Oct 11, 2021 / Published Date: Oct 13, 2021

#### Abstract

One of the most popular types of skin cancer is acral lentiginous melanoma, which usually appears as an irregular, prominent growth on the palms of the hands, feet, or under the nails. In fact, the symptoms of this cancer, which is a prominent colored spot on the skin, slowly begin to appear. In the first stage, malignant cells remain inside the tissue for months or years. The lesion then acts aggressively and appears on the skin as it exits the epidermis. Experts say this type of melanoma can grow rapidly and penetrate deep into the skin. Unlike other skin cancers that occur due to overexposure to the sun, acral melanoma has nothing to do with it. In appearance, these types of cancer spots are more than 6 mm in size and can be brown, blue-gray, black or red. Early in the onset of the disease, the melanoma may have a smooth surface, but over time it becomes thicker and has a dry, uneven surface. Bleeding and sores on the cancerous spot are also possible in some cases. Now that we know that this type of cancer is not caused by the sun's rays, then what is the reason for its occurrence? Experts say our skin has natural pigments. However, melanoma linginosis develops when some malignant pigment cells begin to proliferate in the primary layers of the epidermis. Scientists do not yet know for sure why pigment cells become malignant, but it may be rooted in genetic mutations. When a doctor diagnoses skin cancer in a person, he or she removes the cancerous spots. This process can be more complicated depending on the size of the cancer cells. If the cancer has spread to the lymph nodes, the healing process will take longer. As with other cancers, early detection of skin cancer can speed up the healing process. Therefore, after seeing any spots or colored spots on the palms of your hands, feet or under your nails, see a specialist immediately.

**Keywords:** Cancer; Cells; Tissues; Tumors; Prevention; Prognosis; Diagnosis; Imaging; Screening; Treatment; Management

**Cite this article as:** Alireza Heidari, Elena Locci, Silvia Raymond, et al. 2021. Mechanistic Basis and Therapeutic Strategies in Immune Evasion in Cancer. Int J Hematol Oncol. 4: 414-457.

**Copyright:** This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright © 2021; Alireza Heidari



Evasion in Cancer DOI: https://doi.org/10.36811/ijho.2021.110019 IJH

IJHO: October-2021: Page No: 414-457

### Introduction

The driving force behind skin cancers, such as squamous cell carcinoma, is the sun's ultraviolet (UV) light. Ultraviolet light causes mutations in skin cells, and the mutated cells proliferate before they become skin cancer. But they get help from an unlikely source. In this study, Girardy's team showed that specific immune cells and their growth factors stimulate mutated cancer progenitor cells to reproduce using genetic expression profiles, cell isolation, and preclinical models of skin cancer development in the laboratory. All of this happens microscopically, before any visible tumors appear on the skin. These are very early stages in the development of skin cancer. During exposure to ultraviolet light, skin cells stimulate other immune cells to produce growth factors, including interleukin-22, in the epidermis. Normally, interleukin-22 helps repair damaged skin, but in this example, it makes progenitor cancer cells safe to multiply. Importantly, Girardy's team discovered that all the immune cells involved in this process express a protein called RORyt. The researchers found that when they used an RORyt inhibitor on the skin surface, it greatly reduced the growth of mutated cells. We think this is the way to use similar inhibitors to prevent skin cancer in people with sundamaged skin, especially those who are more at risk, including people with fair skin as well as those with a personal history. Or they are family skin, it opens [1-490].

#### **Results and Discussion**

Researchers have developed a two-dose cancer vaccine using Oxford vaccine technology. The cancer vaccine, when tested in mouse tumor models, increased the level of anti-tumor T cells that penetrated them and improved the immunotherapy effect of the cancer. Compared with immunotherapy alone, the combination with the vaccine showed a greater reduction in tumor size and improved survival in mice. Cancer immunotherapy transforms the patient's immune system into a tumor, leading to dramatic improvement in outcomes in some cancer patients. Anti-PD-1 immunotherapy works by removing the brakes from anti-tumor T cells to allow them to kill cancer cells. Despite this success, anti-PD-1 therapy is ineffective in most cancer patients. One reason for the poor efficacy of anti-PD-1 cancer treatment is that some patients have low levels of anti-tumor T cells. The Oxford vaccine technology used to make the famous Strazenka vaccine produces strong T + CD8 cell responses that are required for good antitumor effects. The team developed a two-dose vaccine with primary viral vectors and various boosters, one of which is identical to the Covid-19 Oxford-Astrazenka vaccine vector. In order to create a vaccine treatment that specifically targets cancer cells, the vaccine was designed to target two MAGE-type proteins found on the surface of many types of cancer cells. These two targets, called MAGE-A3 and NY-ESO-1, were previously approved by the Ludwig Institute. Preclinical trials on mouse tumor models have shown that the cancer vaccine increases the level of tumorinfiltrating CD8 + T cells and increases the response to anti-PD-1 immunotherapy. The combination vaccine and anti-PD-1 treatment resulted in a further reduction in tumor size and improved survival in mice compared with anti-PD-1 therapy alone. MAGE proteins have an advantage over other cancer antigens as vaccine targets because they are present in a wide variety of tumors. This potential advantage extends this method to people with different types of cancer. Given the importance of the target, MAGE-type antigens are not present on the surface of normal tissues, which reduces the risk of side effects from the immune system attacking healthy cells. Our cancer vaccines produce strong CD8 + T cell responses that penetrate tumors and show high potential to increase the effectiveness of immunosuppression therapy and improve outcomes for cancer patients. We combine our basic scientific knowledge of immunology and antigen detection with translational research on vaccine substrates.



**Evasion in Cancer** 

DOI: https://doi.org/10.36811/ijho.2021.110019

IJHO: October-2021: Page No: 414-457

By bringing these teams together, we can address the important challenge of extending the effects of immunotherapy to the benefit of more patients.

## Conclusion

There is a clear link between taking antibiotics and increasing the risk of colon cancer in the next five to ten years. This has been confirmed by researchers at Cancer Research Institute (CRI) of California South University (CSU) after studying 40,000 cases of cancer. The effect of antibiotics on the gut microbiome is thought to be behind the increased risk of cancer. The results show that there are many reasons to limit antibiotics. While antibiotic treatment is necessary in many cases and saves lives, caution should be exercised in the case of less serious illnesses that can be expected to improve anyway. "All of this is to prevent bacterial resistance, but as this study shows, it could also be because antibiotics may increase the risk of colon cancer in the future", a cancer researcher at Cancer Research Institute (CRI) of California South University (CSU). The researchers found that men and women who took antibiotics for more than six months were 17 percent more likely to develop colon cancer; Men taking antibiotics are also at risk for rectal cancer and women are more likely to develop rectal cancer. An increased risk of colon cancer was seen five to ten years after taking antibiotics. Although the increased risk was higher for those who took most antibiotics, the risk of cancer could be significantly smaller but statistically significant after a period of antibiotic use. The present study uses data from 40,000 registered patients with colorectal cancer in the United States from 2010 to 2016. These are compared with an adapted control group of 200,000 cancer-free people in the United States. Data on antibiotic use were collected from records of drugs prescribed for the period 2005-2016. To understand how to increase the risk of antibiotics, the researchers also studied a nonantibiotic antibacterial drug that is used against urinary tract infections and does not affect the microbiome. There was no difference in the incidence of colorectal cancer in people taking the drug, indicating that the effect of antibiotics on the microbiome increased the risk of cancer. While this study only covers oral antibiotics, you should be aware that studies have shown that intravenous antibiotics may affect the gut microbiota in the gut system. The mere use of antibiotics cannot be a reason for warning, the increase in risk is moderate and its effect on the absolute risk for the person is very small. The United States is also introducing routine screening for colon cancer.

#### Acknowledgment

This study was supported by the Cancer Research Institute (CRI) Project of Scientific Instrument and Equipment Development, the National Natural Science Foundation of the United Sates, the International Joint BioSpectroscopy Core Research Laboratory Program supported by the California South University (CSU), and the Key project supported by the American International Standards Institute (AISI), Irvine, California, USA.

#### References

- Heidari A, Brown C. 2015. Study of Composition and Morphology of Cadmium Oxide (CdO) Nanoparticles for Eliminating Cancer Cells. J Nanomed Res. 5: 20.
- Heidari A, Brown C. 2015. Study of Surface Morphological, Phytochemical and Structural Characteristics of Rhodium (III) Oxide (Rh2O3) Nanoparticles. International Journal of Pharmacology, Phytochemistry and Ethnomedicine, Volume. 1: 15-19.
- Heidari A. 2016. An Experimental Biospectroscopic Study on Seminal Plasma in Determination of Semen Quality for Evaluation of Male Infertility. Int J Adv Technol. 7: 7.



**Evasion in Cancer** 

**DOI:** <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

- Heidari A. 2016. Extraction and Preconcentration of N-Tolyl-Sulfonyl-Phosphoramid-Saeure-Dichlorid as an Anti-Cancer Drug from Plants: A Pharmacognosy Study. J Pharmacogn Nat Prod. 2: 103.
- Heidari A. 2016. A Thermodynamic Study on Hydration and Dehydration of DNA and RNA-Amphiphile Complexes. J Bioeng Biomed Sci S. 006.
- Heidari A. 2016. Computational Studies on Molecular Structures and Carbonyl and Ketene Groups' Effects of Singlet and Triplet Energies of Azidoketene O=C=CH-NNN and Isocyanatoketene O=C=CH-N=C=O. J Appl Computat Math. 5: 142.
- Heidari A. 2016. Study of Irradiations to Enhance the Induces the Dissociation of Hydrogen Bonds between Peptide Chains and Transition from Helix Structure to Random Coil Structure Using ATR-FTIR, Raman and 1HNMR Spectroscopies. J Biomol Res Ther. 5: 146.
- Heidari A. 2016. Future Prospects of Point Fluorescence Spectroscopy, Fluorescence Imaging and Fluorescence Endoscopy in Photodynamic Therapy (PDT) for Cancer Cells. J Bioanal Biomed. 8: 135.
- 9. Heidari A. 2016. A Bio-Spectroscopic Study of DNA Density and Color Role as Determining Factor for Absorbed Irradiation in Cancer Cells. Adv Cancer Prev. 1: 102.
- Heidari A. 2016. Manufacturing Process of Solar Cells Using Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles. J Biotechnol Biomater. 6: 125.
- 11. Heidari A. 2016. A Novel Experimental and Computational Approach to Photobiosimulation of Telomeric DNA/RNA: A Biospectroscopic and Photobiological Study. J Res Development. 4: 144.
- Heidari A. 2016. Biochemical and Pharmacodynamical Study of Microporous Molecularly Imprinted Polymer Selective for Vancomycin, Teicoplanin, Oritavancin, Telavancin and Dalbavancin Binding. Biochem Physiol. 5: 146.

- Heidari A. 2016. Anti-Cancer Effect of UV Irradiation at Presence of Cadmium Oxide (CdO) Nanoparticles on DNA of Cancer Cells: A Photodynamic Therapy Study. Arch Cancer Res. 4: 1.
- 14. Heidari A. 2016. Biospectroscopic Study on Multi-Component Reactions (MCRs) in Two A-Type and B-Type Conformations of Nucleic Acids to Determine Ligand Binding Modes, Binding Constant and Stability of Nucleic Acids in Cadmium Oxide (CdO) Nanoparticles-Nucleic Acids Complexes as Anti-Cancer Drugs", Arch Cancer Res. 4: 2.
- 15. Heidari A. 2016. Simulation of Temperature Distribution of DNA/RNA of Human Cancer Cells Using Time-Dependent Bi-Heat Equation and Nd: YAG Lasers. Arch Cancer Res. 4: 2.
- 16. Heidari A. 2016. Quantitative Structure-Activity Relationship (QSAR) Approximation for Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti-Cancer Drugs for the Catalytic Formation of Proviral DNA from Viral RNA Using Multiple Linear and Non-Linear Correlation Approach. Ann Clin Lab Res. 4: 1.
- Heidari A. 2016. Biomedical Study of Cancer Cells DNA Therapy Using Laser Irradiations at Presence of Intelligent Nanoparticles.J Biomedical Sci. 5: 2.
- Heidari A, 2016. Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO4-) and Zinc (Zn2+) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biostat. 7: 292.
- 19. Heidari A. 2016. Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer (Rn2+) and Ununoctium Dimer (Uuo2+) Molecular Cations. Chem Sci J. 7: 112.



**Evasion in Cancer** 

DOI: <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

- 20. Heidari A. 2016. Human Toxicity Photodynamic Therapy Studies on DNA/RNA Complexes as a Promising New Sensitizer for the Treatment of Malignant Tumors Using Bio-Spectroscopic Techniques. J Drug Metab Toxicol. 7: 129.
- Heidari A. 2016. Novel and Stable Modifications of Intelligent Cadmium Oxide (CdO) Nanoparticles as Anti-Cancer Drug in Formation of Nucleic Acids Complexes for Human Cancer Cells' Treatment. Biochem Pharmacol (Los Angel). 5: 207.
- 22. Heidari A. 2016. A Combined Computational and QM/MM Molecular Dynamics Study on Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs) as Hydrogen Storage. Struct Chem Crystallogr Commun. 2: 1.
- 23. Heidari A. 2016. Pharmaceutical and Analytical Chemistry Study of Cadmium Oxide (CdO) Nanoparticles Synthesis Methods and Properties as Anti-Cancer Drug and its Effect on Human Cancer Cell. Pharm Anal Chem Open Access. 2: 113.
- 24. Heidari A. 2016. A Chemotherapeutic and Biospectroscopic Investigation of the Interaction of Double-Standard DNA/RNA-Binding Molecules with Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti-Cancer Drugs for Cancer Cells' Treatment. Chemo Open Access. 5: 129.
- 25. Heidari A. 2016. Pharmacokinetics and Experimental Therapeutic Study of DNA and Other Biomolecules Using Lasers: Advantages and Applications. J Pharmacokinet Exp Ther. 1: 005.
- 26. HeidariA. 2016. Determination of Ratio and Stability Constant of DNA/RNA in Human Cancer Cells and Cadmium Oxide (CdO) Nanoparticles Complexes Using Analytical Electrochemical and Spectroscopic Techniques", Insights Anal Electrochem. 2: 1.
- 27. Heidari A. 2016. Discriminate between Antibacterial and Non-Antibacterial Drugs

Artificial Neutral Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors. J Heavy Met Toxicity Dis. 1: 2.

- 28. Heidari A. 2016. Combined Theoretical and Computational Study of the Belousov-Zhabotinsky Chaotic Reaction and Curtius Rearrangement for Synthesis of Mechlorethamine, Cisplatin, Streptozotocin, Cyclophosphamide, Melphalan, Busulphan and BCNU as Anti-Cancer Drugs. Insights Med Phys. 1: 2.
- 29. Heidari A. 2016. A Translational Biomedical Approach to Structural Arrangement of Amino Acids' Complexes: A Combined Theoretical and Computational Study. Transl Biomed. 7: 2.
- 30. Heidari A. 2016. Ab Initio and Density Functional Theory (DFT) Studies of Dynamic NMR Shielding Tensors and Vibrational Frequencies of DNA/RNA and Cadmium Oxide (CdO) Nanoparticles Complexes in Human Cancer Cells", J Nanomedine Biotherapeutic Discov. 6: 144.
- 31. Heidari A. 2016. Molecular Dynamics and Monte-Carlo Simulations for Replacement Sugars in Insulin Resistance, Obesity, LDL Cholesterol, Triglycerides, Metabolic Syndrome, Type 2 Diabetes and Cardiovascular Disease: A Glycobiological Study. J Glycobiol 5: 111.
- Heidari A. 2016. Synthesis and Study of 5-[(Phenylsulfonyl)Amino]-1,3,4-Thiadiazole-2-Sulfonamide as Potential Anti-Pertussis Drug Using Chromatography and Spectroscopy Techniques. Transl Med (Sunnyvale). 6: 138.
- 33. Heidari A. 2016. Nitrogen, Oxygen, Phosphorus and Sulphur Heterocyclic Anti-Cancer Nano Drugs Separation in the Supercritical Fluid of Ozone (O3) Using Soave-Redlich-Kwong (SRK) and Pang-Robinson (PR) Equations. Electronic J Biol. 12: 4.
- 34. Heidari A. 2016. An Analytical and Computational Infrared Spectroscopic Review



**Evasion in Cancer** 

**DOI:** <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

of Vibrational Modes in Nucleic Acids", Austin J Anal Pharm Chem. 3: 1058.

- 35. Heidari A, Brown C. 2016. Phase, Composition and Morphology Study and Analysis of Os-Pd/HfC Nanocomposites. Nano Res Appl. 2: 1.
- 36. Heidari A, Brown C. 2016. Vibrational Spectroscopic Study of Intensities and Shifts of Symmetric Vibration Modes of Ozone Diluted by Cumene. International Journal of Advanced Chemistry. 4: 5-9.
- 37. Heidar A. 2016. Study of the Role of Anti-Cancer Molecules with Different Sizes for Decreasing Corresponding Bulk Tumor Multiple Organs or Tissues. Arch Can Res. 4: 2.
- 38. Heidari A. 2016. Genomics and Proteomics Studies of Zolpidem, Necopidem, Alpidem, Saripidem, Miroprofen, Zolimidine, Olprinone and Abafungin as Anti-Tumor, Peptide Antibiotics, Antiviral and Central Nervous System (CNS) Drugs", J Data Mining Genomics & Proteomics. 7: 125.
- 39. Heidari A. 2016. Pharmacogenomics and Pharmacoproteomics Studies of Phosphodiesterase-5 (PDE5) Inhibitors and Paclitaxel Albumin-Stabilized Nanoparticles as Sandwiched Anti-Cancer Nano Drugs between Two DNA/RNA Molecules of Human Cancer Cells. J Pharmacogenomics Pharmacoproteomics 7: 153.
- 40. Heidari A. 2016. Biotranslational Medical and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles-DNA/RNA Straight and Cycle Chain Complexes as Potent Anti-Viral, Anti-Tumor and Anti-Microbial Drugs: A Clinical Approach. Transl Biomed. 7: 2.
- 41. Heidari A. 2016. A Comparative Study on Simultaneous Determination and Separation of Adsorbed Cadmium Oxide (CdO) Nanoparticles on DNA/RNA of Human Cancer Cells Using Biospectroscopic Techniques and Dielectrophoresis (DEP) Method. Arch Can Res. 4: 2.
- 42. Heidari A. 2016. Cheminformatics and System Chemistry of Cisplatin, Carboplatin,

Nedaplatin, Oxaliplatin, Heptaplatin and Lobaplatin as Anti-Cancer Nano Drugs: A Combined Computational and Experimental Study. J Inform Data Min. 1: 3.

- 43. Heidari A. 2016. Linear and Non-Linear Quantitative Structure-Anti-Cancer-Activity Relationship (QSACAR) Study of Hydrous Ruthenium (IV) Oxide (RuO2) Nanoparticles as Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) and Anti-Cancer Nano Drugs. J Integr Oncol 5: 110.
- 44. Heidari A. 2016. Synthesis, Characterization and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles-Nucleic Acids Complexes Absence of Soluble Polymer as a Protective Agent Using Nucleic Acids Condensation and Solution Reduction Method. J Nanosci Curr Res. 1: 101.
- 45. Heidari A. 2016. Coplanarity and Collinearity of 4'-Dinonyl-2,2'-Bithiazole in One Domain of Bleomycin and Pingyangmycin to be Responsible for Binding of Cadmium Oxide (CdO) Nanoparticles to DNA/RNA Bidentate Ligands as Anti-Tumor Nano Drug. Int J Drug Dev & Res. 8: 007-008.
- 46. Heidari A. 2016. A Pharmacovigilance Study on Linear and Non-Linear Quantitative Structure (Chromatographic) Retention Relationships (QSRR) Models for the Prediction of Retention Time of Anti-Cancer Nano Drugs under Synchrotron Radiations. J Pharmacovigil. 4: 161.
- 47. Heidari A. 2016. Nanotechnology in Preparation of Semipermeable Polymers. J Adv Chem Eng. 6: 157.
- 48. Heidari A. 2016. A Gastrointestinal Study on Linear and Non-Linear Quantitative Structure (Chromatographic) Retention Relationships (QSRR) Models for Analysis 5-Aminosalicylates Nano Particles as Digestive System Nano Drugs under Synchrotron Radiations. J Gastrointest Dig Syst. 6: 119.
- 49. Heidari A. 2016. DNA/RNA Fragmentation and Cytolysis in Human Cancer Cells Treated with Diphthamide Nano Particles Derivatives. Biomedical Data Mining. 5: 102.



Evasion in Cancer

**DOI:** <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

- 50. Heidari A. 2016. A Successful Strategy for the Prediction of Solubility in the Construction of Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) under Synchrotron Radiations Using Genetic Function Approximation (GFA) Algorithm. J Mol Biol Biotechnol. 1: 1.
- Heidari A. 2016. Computational Study on Molecular Structures of C20, C60, C240, C540, C960, C2160 and C3840 Fullerene Nano Molecules under Synchrotron Radiations Using Fuzzy Logic. J Material Sci Eng. 5: 282.
- 52. Heidari A. 2016. Graph Theoretical Analysis of Zigzag Polyhexamethylene Biguanide, Polyhexamethylene Biguanide Gauze and Polyhexamethylene Biguanide Hydrochloride (PHMB) Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs). J Appl Computat Math 5: 143.
- 53. Heidari A. 2016. The Impact of High-Resolution Imaging on Diagnosis. Int J Clin Med Imaging 3: 101.
- 54. Heidari A. 2016. A Comparative Study of Conformational Behavior of Isotretinoin (13-Cis Retinoic Acid) and Tretinoin (All-Trans Retinoic Acid (ATRA)) Nano Particles as Anti-Cancer Nano Drugs under Synchrotron Radiations Using Hartree-Fock (HF) and Density Functional Theory (DFT) Methods. Insights in Biomed. 1: 2.
- 55. Heidari A. 2016. Advances in Logic, Operations and Computational Mathematics. J Appl Computat Math. 5: 5.
- Heidari A. 2016. Mathematical Equations in Predicting Physical Behavior. J Appl Computat Math 5: 5.
- 57. Heidari A. 2016. Chemotherapy a Last Resort for Cancer Treatment. Chemo Open Access. 5: 4.
- 58. Heidari A. 2016. Separation and Pre-Concentration of Metal Cations-DNA/RNA Chelates Using Molecular Beam Mass

Spectrometry with Tunable Vacuum Ultraviolet (VUV) Synchrotron Radiation and Various Analytical Methods. Mass Spectrom Purif Tech. 2: 101.

- 59. Heidari A. 2016. Yoctosecond Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) under Synchrotron Radiations Studies for Prediction of Solubility of Anti-Cancer Nano Drugs in Aqueous Solutions Using Genetic Function Approximation (GFA) Algorithm. Insight Pharm Res. 1: 1.
- 60. Heidari A. 2016. Cancer Risk Prediction and Assessment in Human Cells under Synchrotron Radiations Using Quantitative Structure Activity Relationship (QSAR) and Quantitative Structure Properties Relationship (QSPR) Studies. Int J Clin Med Imaging. 3: 516. 2016.
- 61. Heidari A. A Novel Approach to Biology. Electronic J Biol. 12: 4.
- 62. Heidari A. 2016. Innovative Biomedical Equipment's for Diagnosis and Treatment. J Bioengineer & Biomedical Sci. 6: 2.
- 63. Heidari A. 2016. Integrating Precision Cancer Medicine into Healthcare, Medicare Reimbursement Changes and the Practice of Oncology: Trends in Oncology Medicine and Practices. J Oncol Med & Pract 1: 2.
- 64. Heidari A. 2016. Promoting Convergence in Biomedical and Biomaterials Sciences and Silk Proteins for Biomedical and Biomaterials Applications: An Introduction to Materials in Medicine and Bioengineering Perspectives. J Bioengineer & Biomedical Sci. 6: 3.
- 65. Heidari A. 2017. X-Ray Fluorescence and X-Ray Diffraction Analysis on Discrete Element Modeling of Nano Powder Metallurgy Processes in Optimal Container
- 66. Design. J Powder Metall Min. 6: 1.
- 67. Heidari A. 2017. Biomolecular Spectroscopy and Dynamics of Nano-Sized Molecules and Clusters as Cross-Linking-Induced Anti-Cancer and Immune-Oncology Nano Drugs Delivery in DNA/RNA of Human Cancer Cells' Membranes under Synchrotron



Evasion in Cancer DOI: https://doi.org/10.36811/ijho.2021.110019 IJH

IJHO: October-2021: Page No: 414-457

Radiations: A Payload-Based Perspective. Arch Chem Res. 1: 2.

- 68. Heidari A. 2017. Deficiencies in Repair of Double-Standard DNA/RNA-Binding Molecules Identified in Many Types of Solid and Liquid Tumors Oncology in Human Body for Advancing Cancer Immunotherapy Using Computer Simulations and Data Analysis: Number of Mutations in a Synchronous Tumor Varies by Age and Type of Synchronous Cancer. J Appl Bioinforma Comput Biol. 6: 1.
- 69. Heidari A. 2017. Electronic Coupling among the Five Nanomolecules Shuts Down Quantum Tunneling in the Presence and Absence of an Applied Magnetic Field for Indication of the Dimer or other Provide Different Influences on the Magnetic Behavior of Single Molecular Magnets (SMMs) as Qubits for Quantum Computing. Glob J Res Rev. 4.
- 70. Heidari A. 2017. Polymorphism in Nano-Sized Graphene Ligand-Induced Transformation of Au38-xAgx/xCux(SPh-tBu)24 to Au36xAgx/xCux(SPh-tBu)24 (x = 1-12)Nanomolecules for Synthesis of Au144xAgx/xCux[(SR)60,(SC4)60, (SC6)60, (SC12)60, (PET)60, (p-MBA)60, (F)60, (Cl)60, (Br)60, (I)60, (At)60, (Uus)60 and (SC6H13)60] Nano Clusters as Anti-Cancer Nano Drugs. J Nanomater Mol Nanotechnol. 6:3.
- 71. Heidari A. 2017. Biomedical Resource Oncology and Data Mining to
- 72. Enable Resource Discovery in Medical, Medicinal, Clinical, Pharmaceutical,
- 73. Chemical and Translational Research and Their Applications in Cancer Research.
- 74. Int J Biomed Data Min. 6: 103.
- 75. Heidari A. 2017. Study of Synthesis, Pharmacokinetics, Pharmacodynamics, Dosing,
- 76. Stability, Safety and Efficacy of Olympiadane Nanomolecules as Agent for
- 77. Cancer Enzymotherapy, Immunotherapy, Chemotherapy, Radiotherapy,

- 78. Hormone Therapy and Targeted Therapy under Synchrotorn Radiation. J Dev Drugs. 6: 154.
- 79. Heidari A. 2017. Novel Approach to Future Horizon of Top Seven Biomedical Research Topics to Watch in 2017: Alzheimer's, Ebola, Hypersomnia, Human Immunodeficiency Virus (HIV), Tuberculosis (TB), Microbiome/Antibiotic Resistance and Endovascular Stroke", J Bioengineer & Biomedical Sci. 7: 127.
- 80. Heidari A. 2017. Opinion on Computational Fluid Dynamics (CFD)
- 81. Technique. Fluid Mech Open Acc. 4: 157.
- 82. Heidari A. 2017. Concurrent Diagnosis of Oncology Influence Outcomes in Emergency General Surgery for Colorectal Cancer and Multiple Sclerosis (MS) Treatment Using Magnetic Resonance Imaging (MRI) and Au329-xAgx(SR)84, Au329(SR)84, Au144(SR)60, Au68(SR)36, Au30(SR)18, Au102(SPh)44, Au38(SPh)24, Au38(SC2H4Ph)24, Au21S(SAdm)15, Au36(pMBA)24 and Au25(pMBA)18 Nano Clusters. J Surgery Emerg Med. 1: 21.
- 83. Heidari A. 2017. Developmental Cell Biology in Adult Stem Cells Death and Autophagy to Trigger a Preventive Allergic Reaction to Common Airborne Allergens under Synchrotron Radiation Using Nanotechnology for Therapeutic Goals in Particular Allergy Shots (Immunotherapy). Cell Biol (Henderson, NV). 6: 1.
- 84. Heidari A. 2017. Changing Metal Powder Characteristics for Elimination of the Heavy Metals Toxicity and Diseases in Disruption of Extracellular Matrix (ECM) Proteins Adjustment in Cancer Metastases Induced by Osteosarcoma, Chondrosarcoma, Carcinoid, Carcinoma, Ewing's Sarcoma, Fibrosarcoma and Secondary Hematopoietic Solid or Soft Tissue Tumors. J Powder Metall Min. 6: 170.
- 85. Heidari A. 2017. Nanomedicine-Based Combination Anti-Cancer Therapy between Nucleic Acids and Anti-Cancer Nano Drugs in Covalent Nano Drugs Delivery Systems for



Evasion in Cancer DOI: https://doi.org/10.36811/ijho.2021.110019 IJH

IJHO: October-2021: Page No: 414-457

Selective Imaging and Treatment of Human Brain Tumors Using Hyaluronic Acid, Alguronic Acid and Sodium Hyaluronate as Anti-Cancer Nano Drugs and Nucleic Acids Delivery under Synchrotron Radiation. Am J Drug Deliv. 5: 2.

- 86. Heidari A. 2017. Clinical Trials of Dendritic Cell Therapies for Cancer Exposing Vulnerabilities in Human Cancer Cells' Metabolism and Metabolomics: New Discoveries, Unique Features Inform New Therapeutic Opportunities, Biotech's Bumpy Road to the Market and Elucidating the Biochemical Programs that Support Cancer Initiation and Progression. J Biol Med Science. 1:103.
- 87. Heidari A. 2017. The Design Graphene-Based Nanosheets as a New Nanomaterial in Anti-Cancer Therapy and Delivery of Chemotherapeutics and Biological Nano Drugs for Liposomal Anti-Cancer Nano Drugs and Gene Delivery. Br Biomed Bull. 5: 305.
- 88. Heidari A. 2017. Integrative Approach to Biological Networks for Emerging Roles of Proteomics, Genomics and Transcriptomics in the Discovery and Validation of Human Colorectal Cancer Biomarkers from DNA/RNA Sequencing Data under Synchrotron Radiation. Transcriptomics. 5: 117.
- 89. Heidari A. 2017. Elimination of the Heavy Metals Toxicity and Diseases in Disruption of Extracellular Matrix (ECM) Proteins and Cell Adhesion Intelligent Nanomolecules Adjustment in Cancer Metastases Using Metalloenzymes and under Synchrotron Radiation. Lett Health Biol Sci. 2: 1-4.
- 90. Heidari A. 2017. Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Dopamine Functionalized Multi-Wall Carbon Nanotubes (MWCNTs) Coated with Nano Graphene Oxide (GO) and Protonated Polyaniline (PANI) in Situ During the Polymerization of Aniline Autogenic Nanoparticles for the Delivery of Anti-Cancer

Nano Drugs under Synchrotron Radiation. Br J Res. 4: 16.

- 91. Heidari A. 2017. Sedative, Analgesic and Ultrasound-Mediated Gastrointestinal Nano Drugs Delivery for Gastrointestinal Endoscopic Procedure, Nano Drug-Induced Gastrointestinal Disorders and Nano Drug Treatment of Gastric Acidity. Res Rep Gastroenterol. 1: 1.
- 92. Heidari A. 2017. Synthesis, Pharmacokinetics, Pharmacodynamics, Dosing, Stability, Safety and Efficacy of Orphan Nano Drugs to Treat High Cholesterol and Related Conditions and to Prevent Cardiovascular Disease under Synchrotron Radiation. J Pharm Sci Emerg Drugs. 5: 1.
- 93. Heidari A. 2017. Non-Linear Compact Proton Synchrotrons to Improve Human Cancer Cells and Tissues Treatments and Diagnostics through Particle Therapy Accelerators with Monochromatic Microbeams. J Cell Biol Mol Sci. 2: 1-5.
- 94. Heidari A. 2017. Design of Targeted Metal Chelation Therapeutics Nanocapsules as Colloidal Carriers and Blood-Brain Barrier (BBB) Translocation to Targeted Deliver Anti-Cancer Nano Drugs into the Human Brain to Treat Alzheimer's Disease under Synchrotron Radiation. J Nanotechnol Material Sci. 4: 1-5.
- 95. Gobato R, Heidari A. 2017. Calculations Using Quantum Chemistry for Inorganic Molecule Simulation BeLi2SeSi. Science Journal of Analytical Chemistry. 5: 76-85.
- 96. Heidari A. 2017. Different High-Resolution Simulations of Medical, Medicinal, Clinical, Pharmaceutical and Therapeutics Oncology of Human Lung Cancer Translational Anti-Cancer Nano Drugs Delivery Treatment Process under Synchrotron and X-Ray Radiations. J Med Oncol. 1: 1.
- 97. Heidari A. 2017. A Modern Ethnomedicinal Technique for Transformation, Prevention and Treatment of Human Malignant Gliomas Tumors into Human Benign Gliomas Tumors under Synchrotron Radiation. Am J Ethnomed. 1: 10.



Evasion in Cancer DOI: https://doi.org/10.36811/ijho.2021.110019 IJH

IJHO: October-2021: Page No: 414-457

- 98. Heidari A. 2017. Active Targeted Nanoparticles for Anti-Cancer Nano Drugs Delivery across the Blood-Brain Barrier for Human Brain Cancer Treatment, Multiple Sclerosis (MS) and Alzheimer's Diseases Using Chemical Modifications of Anti-Cancer Nano Drugs or Drug-Nanoparticles through Zika Virus (ZIKV) Nanocarriers under Synchrotron Radiation. J Med Chem Toxicol. 2: 1-5.
- 99. Heidari A. 2017. Investigation of Medical, Clinical and Pharmaceutical Medicinal, Applications of Estradiol, Mestranol (Norlutin), Norethindrone (NET), Norethisterone Acetate (NETA), (NETE) Norethisterone Enanthate and as Biological Testosterone Nanoparticles Imaging, Cell Labeling, Anti-Microbial Agents and Anti-Cancer Nano Drugs in Nanomedicines Based Drug Delivery Systems for Anti-Cancer Targeting and Treatment. Parana Journal of Science and Education (PJSE), 12.
- 100. Heidari A. 2017. A Comparative Computational and Experimental Study on Different Vibrational Biospectroscopy Methods, Techniques and Applications for Human Cancer Cells in Tumor Tissues Simulation, Modeling, Research, Diagnosis and Treatment. Open J Anal Bioanal Chem. 1: 014-020.
- 101. Heidari A. 2017. Combination of DNA/RNA Ligands and Linear/Non-Linear Visible-Synchrotron Radiation-Driven N-Doped Ordered Mesoporous Cadmium Oxide (CdO) Nanoparticles Photocatalysts Channels Resulted in an Interesting Synergistic Effect Enhancing Catalytic Anti-Cancer Activity. Enz Eng. 6: 1.
- 102. Heidari A. 2017. Modern Approaches in Designing Ferritin, Ferritin Light Chain, Transferrin, Beta-2 Transferrin and Bacterioferritin-Based Anti-Cancer Nano Drugs Encapsulating Nanosphere as DNA-Binding Proteins from Starved Cells (DPS). Mod Appro Drug Des. 1.

- 103. Heidari A. 2017. Potency of Human Interferon  $\beta$ -1a and Human Interferon  $\beta$ -1b in Immunotherapy, Enzymotherapy, Chemotherapy, Radiotherapy, Hormone Therapy and Targeted Therapy of Encephalomyelitis Disseminate/Multiple Sclerosis (MS) and Hepatitis A, B, C, D, E, F and G Virus Enter and Targets Liver Cells. J Proteomics Enzymol. 6: 1.
- 104. Heidari A. 2017. Transport Therapeutic Active Targeting of Human Brain Tumors Enable Anti-Cancer Nanodrugs Delivery across the Blood-Brain Barrier (BBB) to Treat Brain Diseases Using Nanoparticles and Nanocarriers under Synchrotron Radiation. Pharm J Pharmaceutics. 4: 1-5.
- C. 105. Heidari A, Brown 2017. Combinatorial Therapeutic Approaches to DNA/RNA and Benzylpenicillin (Penicillin G), Fluoxetine Hydrochloride (Prozac and Sarafem), Propofol (Diprivan), Acetylsalicylic Acid (ASA) (Aspirin), Naproxen Sodium (Aleve and Naprosyn) and Dextromethamphetamine Nanocapsules with Surface Conjugated DNA/RNA to Targeted Nano Drugs for Enhanced Anti-Cancer Efficacy and Targeted Cancer Therapy Using Nano Drugs Delivery Systems. Ann Adv Chem. 1: 061-069.
- 106. Heidari A. 2017. High-Resolution Simulations of Human Brain Cancer Translational Nano Drugs Delivery Treatment Process under Synchrotron Radiation. J Transl Res. 1: 1-3.
- 107. Heidari A. 2017. Investigation of Anti-Cancer Nano Drugs' Effects' Trend on Human Pancreas Cancer Cells and Tissues Prevention, Diagnosis and Treatment Process under Synchrotron and X-Ray Radiations with the Passage of Time Using Mathematica. Current Trends Anal Bioanal Chem. 1: 36-41.
- 108. Heidari A. 2017. Pros and Cons Controversy on Molecular Imaging and Dynamics of Double-Standard DNA/RNA of Human Preserving Stem Cells-Binding Nano



Evasion in Cancer DOI: https://doi.org/10.36811/ijho.2021.110019 IJH

IJHO: October-2021: Page No: 414-457

Molecules with Androgens/Anabolic Steroids (AAS) or Testosterone Derivatives through Tracking of Helium-4 Nucleus (Alpha Particle) Using Synchrotron Radiation. Arch Biotechnol Biomed. 1: 067-0100.

- 109. Heidari A. 2017. Visualizing Metabolic Changes in Probing Human Cancer Cells and Tissues Metabolism Using Vivo 1H or Proton NMR, 13C NMR, 15N NMR and 31P NMR Spectroscopy and Self-Organizing Maps under Synchrotron Radiation. SOJ Mater Sci Eng. 5: 1-6.
- 110. Heidari A. 2017. Cavity Ring-Down Spectroscopy (CRDS), Circular Dichroism Spectroscopy, Cold Vapour Atomic Fluorescence Spectroscopy and Correlation Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Enliven: Challenges Cancer Detect Ther. 4: 001.
- 111. Heidari A. 2017. Laser Spectroscopy, Laser-Induced Breakdown Spectroscopy and Laser-Induced Plasma Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Int J Hepatol Gastroenterol. 3: 079-084.
- 112. Heidari A. 2017. Time-Resolved Spectroscopy and Time-Stretch Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Enliven: Pharmacovigilance and Drug Safety. 4: 001.
- 113. Heidari A. 2017. Overview of the Role of Vitamins in Reducing Negative Effect of Decapeptyl (Triptorelin Acetate or Pamoate Salts) on Prostate Cancer Cells and Tissues in Prostate Cancer Treatment Process through Transformation of Malignant Prostate Tumors into Benign Prostate Tumors under Synchrotron Radiation. Open J Anal Bioanal Chem. 1: 021-026.
- 114. Heidari A. 2017. Electron Phenomenological Spectroscopy, Electron

Paramagnetic Resonance (EPR) Spectroscopy and Electron Spin Resonance (ESR) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Austin J Anal Pharm Chem. 4: 1091.

- Heidari 2017. 115. A. Therapeutic Nanomedicine Different **High-Resolution** Experimental Images and Computational Simulations for Human Brain Cancer Cells and Tissues Using Nanocarriers Deliver DNA/RNA to Brain Tumors under Synchrotron Radiation with the Passage of Time Using Mathematica and MATLAB. Madridge J Nano Tech. Sci. 2: 77-83.
- 116. Heidari A. 2017. A Consensus and Prospective Study on Restoring Cadmium Oxide (CdO) Nano particles Sensitivity in Recurrent Ovarian Cancer by Extending the Cadmium Oxide (CdO) Nanoparticles-Free Interval Using Synchrotron Radiation Therapy as Antibody-Drug Conjugate for the Treatment of Limited-Stage Small Cell Diverse Epithelial Cancers. Cancer Clin Res Rep. 1: 001.
- 117. Heidari A. 2017. A Novel and Modern Experimental Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under White Synchrotron Radiation. Cancer Sci Res Open Access. 4: 1-8.
- 118. Heidari A. 2017. Different High-Resolution Simulations of Medical, Medicinal, Clinical, Pharmaceutical and Therapeutics Oncology of Human Breast Cancer Translational Nano Drugs Delivery Treatment Process under Synchrotron and X-Ray Radiations. J Oral Cancer Res. 1: 12-17.
- 119. Heidari A. 2017. Vibrational Decihertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (μHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells



Mechanistic Basis and Therapeutic Strategies in Immune Evasion in Cancer

**DOI:** <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

and Tissues under Synchrotron Radiation. International Journal of Biomedicine. 7: 335-340.

- 120. Heidari A. 2017. Force Spectroscopy and Fluorescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. EC Cancer. 2: 239-246.
- 121. Heidari A. 2017. Photoacoustic Spectroscopy, Photoemission Spectroscopy and Photothermal Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. BAOJ Cancer Res Ther. 3: 045-052.
- 122. Heidari A. 2017. J-Spectroscopy, Exchange Spectroscopy (EXSY), Nucle¬ar Overhauser Effect Spectroscopy (NOESY) and Total Correlation Spectroscopy (TOCSY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. EMS Eng Sci J. 1: 006-013.
- 123. Heidari A. 2017. Neutron Spin Echo Spectroscopy and Spin Noise Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Int J Biopharm Sci. 1: 103-107.
- 124. Heidari A. 2017. Vibrational Decahertz (daHz), Hectohertz (hHz), Kilohertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zettahertz (ZHz) and Yottahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Madridge J Anal Sci Instrum. 2: 41-46.
- 125. Heidari A. 2018. Two-Dimensional Infrared Correlation Spectroscopy, Linear Two-Dimensional Infrared Spectroscopy and Non-Linear Two-Dimensional Infrared Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with

the Passage of Time. J Mater Sci Nanotechnol. 6: 101.

- 126. Heidari A. 2018. Fourier Transform Infrared (FTIR) Spectroscopy, Near-Infrared Spectroscopy (NIRS) and Mid-Infrared Spectroscopy (MIRS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Int J Nanotechnol Nanomed. 3: 1-6.
- 127. Heidari A. 2018. Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Austin Pharmacol Pharm. 3: 1011.
- 128. Heidari A. 2017. Novel and Transcendental Prevention, Diagnosis and Treatment Strategies for Investigation of Interaction among Human Blood Cancer Cells, Tumors and Metastases Tissues, with Synchrotron Radiation under Anti-Cancer Nano Drugs Delivery Efficacy Using Modeling and Simulation. MATLAB Madridge J Nov Drug Res. 1: 18-24.
- 129. Heidari A. 2018. Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Open Access J Trans Med Res. 2: 00026-00032.
- Gobato MRR, Gobato R, Heidari A.
   2018. Planting of Jaboticaba Trees for Landscape Repair of Degraded Area. Landscape Architecture and Regional Planning. 3: 1-9.
- 131. Heidari A. 2018. Fluorescence Spectroscopy, Phosphorescence Spectroscopy and Luminescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. SM J Clin. Med. Imaging. 4: 1018.
- 132. Heidari A. 2018. Nuclear Inelastic Scattering Spectroscopy (NISS) and Nuclear Inelastic Absorption Spectroscopy (NIAS)



Evasion in Cancer DOI: https://doi.org/10.36811/ijho.2021.110019 IJH

IJHO: October-2021: Page No: 414-457

Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Int J Pharm Sci. 2: 1-14.

- 133. Heidari A. 2018. X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD) and Energy-Dispersive X-Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. J Oncol Res. 2: 1-14.
- 134. Heidari A. 2018. Correlation Two-Dimensional Nuclear Magnetic Reso-nance (NMR) (2D-NMR) (COSY) Imaging and Spectrosco-py Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. EMS Can Sci. 1-1-001.
- 135. Heidari A. 2018. Thermal Spectroscopy, Photothermal Spectroscopy, Thermal Microspectroscopy, Photothermal Microspectroscopy, Thermal Macrospectroscopy and Photothermal Macrospectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. SM J Biometrics Biostat. 3: 1024.
- 136. Heidari A. 2018. A Modern and Comprehensive Experimental Biospectroscopic Comparative Study on Human Common Cancers' Cells, Tissues and Tumors before and after Synchrotron Radiation Therapy. Open Acc J Oncol Med. 1.
- 137. Heidari A. 2018. Heteronuclear Correlation Experiments such as Heteronuclear Single-Ouantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Synchrotron Cells and Tissues under Radiation. J Endocrinol Thyroid Res. 3: 555603.

- 138. Heidari A. 2018. Nuclear Resonance Vibrational Spectroscopy (NRVS), Nuclear Inelastic Scattering Spectroscopy (NISS), Nuclear Inelastic Absorption Spectroscopy (NIAS) and Nuclear Resonant Inelastic X-Ray Scattering Spectroscopy (NRIXSS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Int J Bioorg Chem Mol Biol. 6: 1-5.
- 139. Heidari A. 2018. A Novel and Modern Experimental Approach to Vibrational Circular Dichroism Spectroscopy and Video Comparative Spectroscopy Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under and Monochromatic Synchrotron White Radiation. Glob J Endocrinol Metab. 1: 514-519.
- 140. Heidari A. 2018. Pros and Cons Controversy on Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. EMS Pharma J. 1: 2-8.
- 141. Heidari A. 2018. Modern А Comparative and Comprehensive Experimental Biospectroscopic Study on Different Types of Infrared Spectroscopy of Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. J Analyt Molecul Tech. 3: 8.
- 142. Heidari A. 2018. Investigation of Cancer Types Using Synchrotron Technology for Proton Beam Therapy: An Experimental Biospectroscopic Comparative Study. European Modern Studies Journal. 2: 13-29.
- 143. Heidari A. 2018. Saturated Spectroscopy and Unsaturated Spectroscopy Comparative Study on Malignant and Benign



Evasion in Cancer

DOI: <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Imaging J Clin Medical Sci. 5: 001-007.

- 144. Heidari A. 2018. Small-Angle Neutron Scattering (SANS) and Wide-Angle X-Ray Diffraction (WAXD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Int J Bioorg Chem Mol Biol. 6: 1-6.
- 145. Heidari A. 2018. Investigation of Bladder Cancer, Breast Cancer, Colorectal Cancer, Endometrial Cancer, Kidney Cancer, Leukemia, Liver, Lung Cancer, Melanoma, Non-Hodgkin Lymphoma, Pancreatic Cancer, Prostate Cancer, Thyroid Cancer and Non-Melanoma Skin Cancer Using Synchrotron Technology for Proton Beam Therapy: An Experimental Biospectroscopic Comparative Study. Ther Res Skin Dis. 1.
- 146. Heidari A. 2018. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy, Micro-Attenuated Total Reflectance Fourier Transform Infrared (Micro-ATR-FTIR) Spectroscopy and Macro-Attenuated Total Reflectance Fourier Transform Infrared (Macro-ATR-FTIR) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. International Journal of Chemistry Papers. 2: 1-12.
- 147. Heidari A. 2018. Mössbauer Spectroscopy, Mössbauer Emission Spectroscopy 57Fe and Mössbauer Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Acta Scientific Cancer Biology 2. 3: 17-20.
- 148. Heidari A. 2018. Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Organic & Medicinal Chem IJ. 6: 555676.
- 149.HeidariA.2018.CorrelationSpectroscopy,ExclusiveCorrelationSpectroscopyandTotalCorrelation

Spectroscopy Comparative Study on Malignant and Benign Human AIDS-Related Cancers Cells and Tissues with the Passage of Time under Synchrotron Radiation. Int J Bioanal Biomed. 2: 001-007.

- 2018. Heidari 150. A. Biomedical Instrumentation Applications and of Biospectroscopic Methods and Techniques in Malignant and Benign Human Cancer Cells and Tissues Studies under Synchrotron Radiation and Anti-Cancer Nano Drugs Delivery. Am J Nanotechnol Nanomed. 1: 001-009.
- 151. Heidari A. 2018. Vivo 1H or Proton NMR, 13C NMR, 15N NMR and 31P NMR Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation", Ann Biomet Biostat. 1: 1001.
- 152. Heidari A. 2018. Grazing-Incidence Small-Angle Neutron Scattering (GISANS) and Grazing-Incidence X-Ray Diffraction (GIXD) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Tumors under Synchrotron Radiation. Ann Cardiovasc Surg. 1: 1006.
- 153. Heidari A. 2018. Adsorption Isotherms and Kinetics of Multi-Walled Carbon Nanotubes (MWCNTs), Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs) for Eliminating Carcinoma, Sarcoma, Lymphoma, Leukemia, Germ Cell Tumor and Blastoma Cancer Cells and Tissues. Clin Med Rev Case Rep. 5: 201.
- Correlation Heidari 2018. 154. A. Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total Correlation Spectroscopy (TOCSY), Incredible Natural-Abundance Double-Quantum Transfer Experiment (INADEQUATE), Heteronuclear Single-Quantum Correlation Spectroscopy Multiple-Bond (HSOC), Heteronuclear Correlation Spectroscopy (HMBC), Nuclear Overhauser Effect Spectroscopy (NOESY) and



**Evasion in Cancer** 

**DOI:** <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

Rotating Frame Nuclear Overhauser Effect Spectroscopy (ROESY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Acta Scientific Pharmaceutical Sciences. 2. 5: 30-35.

- Heidari A. 2018. Small-Angle X-Ray 155. Scattering (SAXS), Ultra-Small Angle X-Ray (USAXS), Fluctuation Scattering X-Ray Scattering (FXS), Wide-Angle X-Ray Scattering (WAXS), Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS), Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS), Small-Angle Neutron Scattering (SANS). Grazing-Incidence Small-Angle Scattering (GISANS), Neutron X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD), Wide-Angle X-Ray Diffraction Grazing-Incidence (WAXD), X-Ray Diffraction (GIXD) and Energy-Dispersive X-Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Oncol Res Rev. 1: 1-10.
- Heidari 2018. 156. A. Pump-Probe Spectroscopy and Transient Grating Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Adv Material Sci Engg. 2: 1-7.
- 157. Heidari A. 2018. Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS) and Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Insights Pharmacol Pharm Sci. 1: 1-8.
- 2018. 158. Heidari A. Acoustic Spectroscopy, Acoustic Resonance Spectroscopy and Spectroscopy Auger Comparative Study on Anti-Cancer Nano Drugs Delivery in Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Nanosci Technol. 5: 1-9.

- 159. Heidari A. 2018. Niobium, Technetium, Ruthenium, Rhodium, Hafnium, Rhenium, Osmium and Iridium Ions Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Nanomed Nanotechnol. 3: 138.
- Heidari 2018. Homonuclear 160. A. Correlation Experiments such as Homonuclear Single-Quantum Correlation Spectroscopy Homonuclear Multiple-Ouantum (HSOC), Correlation Spectroscopy (HMQC) and Multiple-Bond Homonuclear Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Austin J Proteomics Bioinform & Genomics. 5: 1024.
- 161. 2018. Atomic Force Heidari A. Microscopy Based Infrared (AFM-IR) Spectroscopy and Nuclear Resonance Vibrational Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. J Appl Biotechnol Bioeng. 5: 142-148.
- 162. Heidari A. 2018. Time-Dependent Vibrational Spectral Analysis of Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. J Cancer Oncol. 2: 124.
- 163. Heidari A. 2018. Palauamine and Olympiadane Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Arc Org Inorg Chem Sci. 3.
- 164. Gobato R, Heidari A. 2018. Infrared Spectrum and Sites of Action of Sanguinarine by Molecular Mechanics and ab initio



Evasion in Cancer DOI: https://doi.org/10.36811/ijho.2021.110019 IJH

IJHO: October-2021: Page No: 414-457

Methods. International Journal of Atmospheric and Oceanic Sciences. 2: 1-9.

- 165. Heidari A. 2018. Angelic Acid, Diabolic Acids, Draculin and Miraculin Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment Under Synchrotron and Synchrocyclotron Radiations. Med & Analy Chem Int J. 2: 111.
- Heidari A. 2018. Gamma Linolenic 166. 5-Heptadeca-5,8,11-Trienvl Ester. Methyl 1,3,4-Oxadiazole-2-Thiol, Sulphoquinovosyl Diacyl Glycerol, Ruscogenin, Nocturnoside B, Protodioscine Parquisoside-B, Β, Leiocarposide, Narangenin, 7-Methoxy Lupeol, Hespertin, Rosemariquinone, Rosmanol and Rosemadiol Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Int J Pharma Anal Acta. 2: 007-014.
- 167. Heidari A. 2018. Fourier Transform Infrared (FTIR) Spectroscopy, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy, Micro-Attenuated Total Reflectance Fourier Transform Infrared (Micro-ATR-FTIR) Spectroscopy, Macro-Attenuated Total Reflectance Fourier Transform Infrared (Macro-ATR-FTIR) Spectroscopy, Two-Dimensional Infrared Correlation Spectroscopy, Linear Two-Dimensional Infrared Spectroscopy, Non-Linear **Two-Dimensional** Infrared Spectroscopy, Atomic Force Microscopy Infrared (AFM-IR) Spectroscopy, Based Photodissociation Spectroscopy, Infrared Infrared Correlation Table Spectroscopy, Near-Infrared Spectroscopy (NIRS), Mid-Infrared Spectroscopy (MIRS), Nuclear Resonance Vibrational Spectroscopy, Thermal

Infrared Spectroscopy and Photothermal Infrared Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Glob Imaging Insights, Volume. 3: 1-14.

- 2018. Heteronuclear 168. Heidari A. Single-Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Chronicle of Medicine Radiations. and Surgery 2. 3: 144-156.
- 169. HeidariA. 2018. Tetrakis [3, 5-bis (Trifluoromethyl) Phenyl] Borate (BARF)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Medical Research and Clinical Case Reports 2. 1: 113-126.
- Heidari A. 2018. Sydnone, Münchnone, Montréalone, Mogone, Montelukast, Quebecol and Palau'amine-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Sur Cas Stud Op Acc J. 1.
- Heidari A. 2018. Fornacite, Orotic Acid, Rhamnetin, Sodium Ethyl Xanthate (SEX) and Spermine (Spermidine or Polyamine) Nanomolecules Incorporation into the Nanopolymeric Matrix (NPM). International Journal of Biochemistry and Biomolecules. 4: 1-19.
- Heidari A, Gobato R. 2018.
  Putrescine, Cadaverine, Spermine and Spermidine-Enhance d Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Parana Journal of Science and Education. 5: 1.
- Heidari A. 2018. Cadaverine (1,5-Pentanediamine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD or DEADCAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix



Evasion in Cancer

**DOI:** <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

(NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Hiv and Sexual Health Open Access Open Journal. 1: 4-11.

- 174. Heidari A. 2018. Improving the Performance of Nano-Endofullerenes in Polyaniline Nanostructure-Based Biosensors Covering Californium Colloidal by Nanoparticles with Multi-Walled Carbon Nanotubes. Journal of Advances in Nanomaterials. 3: 1-28.
- 175. Gobato R. Heidari A. 2018. Molecular Mechanics and Quantum Chemical Study on Sites of Action of Sanguinarine Using Vibrational Spectroscopy Based on Molecular Mechanics and Quantum Chemical Calculations. Malaysian Journal of Chemistry. 20: 1-23.
- Heidari A. 2018. Vibrational Biospectroscopic Studies on Anti-cancer Nanopharmaceuticals (Part I). Malaysian Journal of Chemistr. 20: 33-73.
- Heidari A. Vibrational Biospectroscopic Studies on Anti-cancer Nanopharmaceuticals (Part II). Malaysian Journal of Chemistry. 20: 74-117.
- Heidari A. 2018. Uranocene (U(C8H8)2) and Bis (Cyclooctatetraene)Iron (Fe(C8H8)2 or Fe (COT)2)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Chemistry Reports. 1: Pages 1-16.
- 179. Heidari A. 2018. Biomedical Systematic and Emerging Technological Study on Human Malignant and Benign Cancer Cells and Tissues Biospectroscopic Analysis under Synchrotron Radiation. Glob Imaging Insights. 3: 1-7.
- 180. Heidari A. 2018. Deep-Level Transient Spectroscopy and X-Ray Photoelectron Spectroscopy (XPS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the

Passage of Time under Synchrotron Radiation. Res Dev Material Sci. 7: 659.

- 181. Heidari A. 2018. C70-Carboxyfullerenes Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights. 3: 1-7.
- 182. Heidari A. 2018. The Effect of Temperature on Cadmium Oxide (CdO) Nanoparticles Produced by Synchrotron Radiation in the Human Cancer Cells, Tissues and Tumors. International Journal of Advanced Chemistry. 6: 140-156.
- Heidari A. 2018. A Clinical and 183. Investigation Molecular Pathology of Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total Spectroscopy Correlation (TOCSY), Single-Quantum Correlation Heteronuclear (HSQC) and Heteronuclear Spectroscopy Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations Using Cyclotron versus Synchrotron, Synchrocyclotron and the Large Hadron Collider (LHC) for Delivery of Proton and Helium Ion (Charged Particle) Beams for Oncology Radiotherapy. European Journal of Advances in Engineering and Technology. 5: 414-426.
- 184. Heidari A. 2018. Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. J Oncol Res. 1: 1-20.
- 185. Heidari A. 2018. Use of Molecular Enzymes in the Treatment of Chronic



**Evasion in Cancer** 

DOI: <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

Disorders. Canc Oncol Open Access J. 1: 12-15.

- 186. Heidari A. 2018. Vibrational Biospectroscopic Study and Chemical Structure Analysis of Unsaturated Polyamides Nanoparticles as Anti-Cancer Polymeric Nanomedicines Using Synchrotron Radiation. International Journal of Advanced Chemistry. 6: 167-189s.
- 187. Heidari A. 2018. Adamantane, Irene, Naftazone and Pyridine-Enhanced Precatalyst Preparation Stabilization and Initiation (PEPPSI) Nano Molecules. Madridge J Nov Drug Res. 2: 61-67.
- 188. Heidari A. 2018. Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Madridge J Nov Drug Res. 2: 68-74.
- Heidari A, Gobato R. 2018. A Novel 189. Approach to Reduce Toxicities and to Improve Bioavailabilities of DNA/RNA of Human Cancer Cells-Containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD),  $\Delta^9$ -Tetrahydrocannabinol (THC) [(-)trans- $\Delta^9$ -Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as Anti-Cancer Nano Drugs by Coassembly of Dual Anti-Cancer Nano Drugs to Inhibit DNA/RNA of Human Cancer Cells Drug Resistance. Parana Journal of Science and Education. 4: 1-17.
- 190. Gobato Heidari A. R. 2018. Ultraviolet Photoelectron Spectroscopy (UPS) and Ultraviolet-Visible (UV-Vis) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation", Parana Journal of Science and Education. 6: 18-33.
- 191. Gobato R, Heidari A, Mitra A. 2018. The Creation of C13H20BeLi2SeSi. The

Proposal of a Bio-Inorganic Molecule, Using Ab Initio Methods for the Genesis of a Nano Membrane. Arc Org Inorg Chem Sci 3: 167.

- 192. Gobato R, Heidari A. 2018. Using the Quantum Chemistry for Genesis of a Nano Biomembrane with a Combination of the Elements Be, Li, Se, Si, C and H. J Nanomed Res. 7: 241-252.
- 193. Heidari A. 2018. Bastadins and Bastaranes-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Glob Imaging Insights, Volume 3: 1-7.
- 194. Heidari A. 2018. Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCArboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Synchrotron Treatment under and Synchrocyclotron Radiations. Glob Imaging Insights, Volume. 3: 1-8.
- 195. Dadvar E, Heidari A. 2018. A Review on Separation Techniques of Graphene Oxide (GO)/Base on Hybrid Polymer Membranes for Eradication of Dyes and Oil Compounds: Recent Progress in Graphene Oxide (GO)/Base on Polymer Membranes-Related Nanotechnologies. Clin Med Rev Case Rep. 5: 228.

196. Heidari A, Gobato R. 2018. First-Time Simulation of Deoxyuridine Monophosphate (dUMP) (Deoxyuridylic Acid or Deoxyuridylate) and Vomitoxin (Deoxynivalenol (DON))  $((3\alpha, 7\alpha) - 3, 7, 15 -$ Trihydroxy-12,13-Epoxytrichothec-9-En-8-One)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for



Evasion in Cancer DOI: https://doi.org/10.36811/ijho.2021.110019 IJH

IJHO: October-2021: Page No: 414-457

Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education. 6: 46-67.

- 197. Heidari A. 2018. Buckminsterfullerene (Fullerene), Bullvalene, Dickite and Josiphos Ligands Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Hematology and Thromboembolic Diseases Prevention, Diagnosis and Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights, Volume. 3: 1-7.
- 198. Heidari A. 2018. Fluctuation X-Ray Scattering (FXS) and Wide-Angle X-Ray Scattering (WAXS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Glob Imaging Insights. 3: 1-7.
- 199. Heidari A. 2018. A Novel Approach to Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total Correlation Spectroscopy (TOCSY), Incredible Natural-Abundance Double-**O**uantum Transfer Experiment (INADEOUATE), Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC), Nuclear Overhauser Effect Spectroscopy (NOESY) and Rotating Frame Nuclear Overhauser Effect Spectroscopy (ROESY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Glob Imaging Insights. 3: 1-9.
- 200. Heidari A. 2018. Terphenyl-Based with Rhodamine, Reversible Receptor Molecular Rhodamine-Based Probe. Rhodamine-Based Using the Spirolactam Ring Opening, Rhodamine B with Ferrocene Substituent, Calix[4]Arene-Based Receptor, Thioether + Aniline-Derived Ligand Framework Linked to a Fluorescein Platform, Mercuryfluor-1 (Flourescent Probe), N,N'-

Dibenzyl-1,4,10,13-Tetraraoxa-7,16-

Diazacyclooctadecane and Terphenyl-Based Reversible Receptor with Pyrene and Quinoline as the Fluorophores-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Glob Imaging Insights, Volume. 3: 1-9.

- Heidari A. 2018. Small-Angle X-Ray 201. Scattering (SAXS), Ultra-Small Angle X-Ray Scattering (USAXS), Fluctuation X-Ray Scattering (FXS), Wide-Angle X-Ray Scattering (WAXS), Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS), Grazing-Wide-Angle X-Ray Scattering Incidence (GIWAXS), Small-Angle Neutron Scattering (SANS), Grazing-Incidence Small-Angle (GISANS), Neutron Scattering X-Ray Diffraction (XRD), Powder X-Ray Diffraction Wide-Angle X-Ray Diffraction (PXRD), (WAXD), Grazing-Incidence X-Rav Diffraction (GIXD) and Energy-Dispersive X-Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Glob Imaging Insights. 3: 1-10.
- 202. Heidari A. 2018. Nuclear Resonant Inelastic X-Ray Scattering Spectroscopy (NRIXSS) and Nuclear Resonance Vibrational Spectroscopy (NRVS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Glob Imaging Insights. 3: 1-7.
- 203. Heidari A. 2018. Small-Angle X-Ray Scattering (SAXS) and Ultra-Small Angle X-Ray Scattering (USAXS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Glob Imaging Insights. 3: 1-7.
- 204. Heidari A. 2018. Curious Chloride (CmCl3) and Titanic Chloride (TiCl4)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules for Cancer Treatment and Cellular Therapeutics. J. Cancer Research and Therapeutic Interventions. 1: 01-10.



Evasion in Cancer DOI: https://doi.org/10.36811/ijho.2021.110019 IJH

IJHO: October-2021: Page No: 414-457

- 205. Gobato R, Gobato MRR, Heidari A. 2018. Mitra, Spectroscopy and Dipole Moment of the Molecule C13H20BeLi2SeSi via Quantum Chemistry Using Ab Initio, Hartree-Fock Method in the Base Set CCpVTZ and 6-311G\*\*(3df, 3pd). Arc Org Inorg Chem Sci. 3: 402-409.
- 206. Heidari A. 2018. C60 and C70-Encapsulating Carbon Nanotubes Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Integr Mol Med. 5: 1-8.
- 207. Heidari A. 2018. Two-Dimensional (2D) 1H or Proton NMR, 13C NMR, 15N NMR and 31P NMR Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Glob Imaging Insights. 3: 1-8.
- 208. Heidari A. 2018. FT-Raman Spectroscopy, Coherent Anti-Stokes Raman Spectroscopy (CARS) and Raman Optical Activity Spectroscopy (ROAS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Glob Imaging Insights. 3: 1-8.
- 209. Heidari A. 2018. Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations. Chronicle of Medicine and Surgery 2. 3: 144-156.
- 210. HeidariA. 2018. Tetrakis [3, 5-bis (Trifluoromethyl) Phenyl] Borate (BARF)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Medical Research and Clinical Case Reports 2. 1: 113-126.

- 211. Heidari A. 2018. Sydnone, Münchnone, Montréalone, Mogone, Montelukast, Quebecol and Palau'amine-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Sur Cas Stud Op Acc J. 1.
- 212. Heidari A. 2018. Fornacite, Orotic Acid, Rhamnetin, Sodium Ethyl Xanthate (SEX) and Spermine (Spermidine or Polyamine) Nanomolecules Incorporation into the Nanopolymeric Matrix (NPM). International Journal of Biochemistry and Biomolecules. 4: 1-19.
- 213. Heidari A, Gobato R. 2018. Putrescine, Cadaverine, Spermine and Spermidine-Enhance d Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Parana Journal of Science and Education. 5: 1.
- 214. Heidari A. 2018. Cadaverine (1,5-Pentanediamine or Pentamethylenediamine), Azodicarboxylate (DEAD Diethyl or DEADCAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Hiv and Sexual Health Open Access Open Journal, 1: 4-11.
- 215. Heidari A. 2018. Improving the Performance of Nano-Endofullerenes in Polyaniline Nanostructure-Based Biosensors bv Covering Californium Colloidal Nanoparticles with Multi-Walled Carbon Nanotubes. Journal of Advances in Nanomaterials. 3: 1-28.
- 216. Gobato R. Heidari A. 2018. Molecular Mechanics and Quantum Chemical Study on Sites of Action of Sanguinarine Using Vibrational Spectroscopy Based on Molecular Mechanics and Quantum Chemical Calculations. Malaysian Journal of Chemistry. 20: 1-23.



Evasion in Cancer DOI: https://doi.org/10.36811/ijho.2021.110019 IJH

IJHO: October-2021: Page No: 414-457

- Heidari A. 2018. Vibrational Biospectroscopic Studies on Anti-cancer Nanopharmaceuticals (Part I). Malaysian Journal of Chemistr. 20: 33-73.
- 169. Heidari A. Vibrational Biospectroscopic Studies on Anti-cancer Nanopharmaceuticals (Part II). Malaysian Journal of Chemistry. 20: 74-117.
- 219. Heidari A. 2018. Uranocene (U(C8H8)2) and Bis (Cyclooctatetraene)Iron (Fe(C8H8)2 or Fe (COT)2)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Chemistry Reports. 1: Pages 1-16.
- 220. Heidari A. 2018. Biomedical Systematic and Emerging Technological Study on Human Malignant and Benign Cancer Cells and Tissues Biospectroscopic Analysis under Synchrotron Radiation. Glob Imaging Insights. 3: 1-7.
- 221. Heidari Deep-Level A. 2018. Spectroscopy X-Ray Transient and Photoelectron Spectroscopy (XPS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Res Dev Material Sci. 7: 659.
- Heidari A. 2018. C70-Carboxyfullerenes Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights. 3: 1-7.
- 223. Heidari A. 2018. The Effect of Temperature on Cadmium Oxide (CdO) Nanoparticles Produced by Synchrotron Radiation in the Human Cancer Cells, Tissues and Tumors. International Journal of Advanced Chemistry. 6: 140-156.
- 224. Heidari A. 2018. A Clinical and Molecular Pathology Investigation of Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total

Correlation Spectroscopy (TOCSY), Heteronuclear Single-Ouantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and under Synchrotron Tumors and Synchrocyclotron Radiations Using Cyclotron versus Synchrotron, Synchrocyclotron and the Large Hadron Collider (LHC) for Delivery of Proton and Helium Ion (Charged Particle) Beams for Oncology Radiotherapy. European Journal of Advances in Engineering and Technology. 5: 414-426.

- 225. Heidari A. 2018. Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. J Oncol Res. 1: 1-20.
- 226. Heidari A. 2018. Use of Molecular Enzymes in the Treatment of Chronic Disorders. Canc Oncol Open Access J. 1: 12-15.
- 227. Heidari A. 2018. Vibrational Biospectroscopic Study and Chemical Structure Analysis of Unsaturated Polyamides Nanoparticles as Anti-Cancer Polymeric Nanomedicines Using Synchrotron Radiation. International Journal of Advanced Chemistry. 6: 167-189s.
- 228. Heidari A. 2018. Adamantane, Irene, Naftazone and Pyridine-Enhanced Precatalyst Preparation Stabilization and Initiation (PEPPSI) Nano Molecules. Madridge J Nov Drug Res. 2: 61-67.
- 229. Heidari A. 2018. Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Madridge J Nov Drug Res. 2: 68-74.



**Evasion in Cancer** 

**DOI:** <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

- 230. Heidari A, Gobato R. 2018. A Novel Approach to Reduce Toxicities and to Improve Bioavailabilities of DNA/RNA of Human Cancer Cells-Containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD),  $\Delta^9$ -Tetrahydrocannabinol (THC) [(-)trans- $\Delta^9$ -Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as Anti-Cancer Nano Drugs by Coassembly of Dual Anti-Cancer Nano Drugs to Inhibit DNA/RNA of Human Cancer Cells Drug Resistance. Parana Journal of Science and Education. 4: 1-17.
- 231. Heidari A. Gobato R. 2018. Ultraviolet Photoelectron Spectroscopy (UPS) Ultraviolet-Visible (UV-Vis) and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation", Parana Journal of Science and Education. 6: 18-33.
- 232. Gobato R, Heidari A, Mitra A. 2018. The Creation of C13H20BeLi2SeSi. The Proposal of a Bio-Inorganic Molecule, Using Ab Initio Methods for the Genesis of a Nano Membrane. Arc Org Inorg Chem Sci 3: 167.
- 233. Gobato R, Heidari A. 2018. Using the Quantum Chemistry for Genesis of a Nano Biomembrane with a Combination of the Elements Be, Li, Se, Si, C and H. J Nanomed Res. 7: 241-252.
- 234. Heidari A. 2018. Bastadins and Bastaranes-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Glob Imaging Insights, Volume 3: 1-7.
- 235. Heidari A. 2018. Fucitol, Pterodactyladiene, DEAD or DEADCAT (DiEthyl AzoDiCArboxylaTe), Skatole, the NanoPutians, Thebacon, Pikachurin, Tie Fighter, Spermidine and Mirasorvone Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for

Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights, Volume. 3: 1-8.

- 236. Dadvar E, Heidari A. 2018. A Review on Separation Techniques of Graphene Oxide (GO)/Base on Hybrid Polymer Membranes for Eradication of Dyes and Oil Compounds: Recent Progress in Graphene Oxide (GO)/Base on Polymer Membranes-Related Nanotechnologies. Clin Med Rev Case Rep. 5: 228.
- 237. Heidari A, Gobato R. 2018. First-Time Simulation of Deoxyuridine Monophosphate (dUMP) (Deoxyuridylic Acid or Deoxyuridylate) and Vomitoxin (Deoxynivalenol (DON))  $((3\alpha,7\alpha)-3,7,15-$ Trihydroxy-12,13-Epoxytrichothec-9-En-8-One)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education. 6: 46-67.
- 238. Heidari A. 2018. Buckminsterfullerene (Fullerene), Bullvalene, Dickite and Josiphos Ligands Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Hematology and Thromboembolic Diseases Prevention, Diagnosis and Treatment under Synchrotron and Synchrocyclotron Radiations. Glob Imaging Insights, Volume. 3: 1-7.
- 239. Heidari A. 2018. Fluctuation X-Ray Scattering (FXS) and Wide-Angle X-Ray Scattering (WAXS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Glob Imaging Insights. 3: 1-7.



**Evasion in Cancer** 

DOI: https://doi.org/10.36811/ijho.2021.110019

IJHO: October-2021: Page No: 414-457

240. Heidari A. 2018. A Novel Approach to Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total Correlation Spectroscopy (TOCSY), Incredible Natural-Abundance Double-Quantum Transfer Experiment (INADEOUATE), Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Multiple-Bond Heteronuclear Correlation Spectroscopy (HMBC), Nuclear Overhauser Effect Spectroscopy (NOESY) and Rotating Nuclear Overhauser Frame Effect Spectroscopy (ROESY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Glob Imaging Insights. 3: 1-9.

Heidari A. 2018. Terphenyl-Based 241. Rhodamine, Reversible Receptor with Rhodamine-Based Molecular Probe, Rhodamine-Based Using the Spirolactam Ring Opening, Rhodamine B with Ferrocene Substituent, Calix[4]Arene-Based Receptor, Thioether +Aniline-Derived Ligand Framework Linked to a Fluorescein Platform, Mercuryfluor-1 (Flourescent Probe), N,N'-Dibenzyl-1,4,10,13-Tetraraoxa-7,16-

Diazacyclooctadecane and Terphenyl-Based Reversible Receptor with Pyrene and Quinoline as the Fluorophores-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Glob Imaging Insights, Volume. 3: 1-9.

242. Heidari A. 2018. Small-Angle X-Ray Scattering (SAXS), Ultra-Small Angle X-Ray Scattering (USAXS), Fluctuation X-Ray Wide-Angle Scattering (FXS), X-Rav Scattering (WAXS), Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS), Grazing-Wide-Angle X-Ray Scattering Incidence (GIWAXS), Small-Angle Neutron Scattering (SANS), Grazing-Incidence Small-Angle Scattering (GISANS), Neutron X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD), Wide-Angle X-Ray Diffraction (WAXD), Grazing-Incidence X-Rav Diffraction (GIXD) and Energy-Dispersive X-

Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Glob Imaging Insights. 3: 1-10.

- 243. Heidari A. 2018. Nuclear Resonant Inelastic X-Ray Scattering Spectroscopy (NRIXSS) and Nuclear Resonance Vibrational Spectroscopy (NRVS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Glob Imaging Insights. 3: 1-7.
- 244. Heidari A. 2018. Small-Angle X-Ray Scattering (SAXS) and Ultra-Small Angle X-Ray Scattering (USAXS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Glob Imaging Insights. 3: 1-7.
- 245. Heidari A. 2018. Curious Chloride (CmCl3) and Titanic Chloride (TiCl4)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules for Cancer Treatment and Cellular Therapeutics. J. Cancer Research and Therapeutic Interventions. 1: 01-10.
- 246. Gobato R, Gobato MRR, Heidari A. 2018. Mitra, Spectroscopy and Dipole Moment of the Molecule C13H20BeLi2SeSi via Quantum Chemistry Using Ab Initio, Hartree-Fock Method in the Base Set CCpVTZ and 6-311G\*\*(3df, 3pd). Arc Org Inorg Chem Sci. 3: 402-409.
- 247. Heidari A. 2018. C60 and C70-Encapsulating Carbon Nanotubes Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Integr Mol Med. 5: 1-8.
- 248. Heidari A. 2018. Two-Dimensional
  (2D) 1H or Proton NMR, 13C NMR, 15N
  NMR and 31P NMR Spectroscopy
  Comparative Study on Malignant and Benign
  Human Cancer Cells and Tissues under



**Evasion in Cancer** 

DOI: https://doi.org/10.36811/ijho.2021.110019

IJHO: October-2021: Page No: 414-457

Synchrotron Radiation with the Passage of Time. Glob Imaging Insights. 3: 1-8.

- 249. Heidari A. 2018. FT-Raman Spectroscopy, Coherent Anti-Stokes Raman Spectroscopy (CARS) and Raman Optical Activity Spectroscopy (ROAS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Glob Imaging Insights. 3: 1-8.
- 250. Heidari A. 2018. A Modern and Comprehensive Investigation of Inelastic Electron Tunneling Spectroscopy (IETS) and Tunneling Spectroscopy Scanning on Malignant and Benign Human Cancer Cells, Tissues and Tumors through Optimizing Synchrotron Microbeam Radiotherapy for Human Cancer Treatments and Diagnostics: Experimental Biospectroscopic An Comparative Study. Glob Imaging Insights. 3: 1-8.
- 251. Heidari A. 2018. A Hypertension Approach to Thermal Infrared Spectroscopy and Photothermal Infrared Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Glob Imaging Insights. 3: 1-8.
- 252. Heidari A. 2018. Incredible Natural-Abundance Double-Quantum Transfer Experiment (INADEQUATE), Nuclear Overhauser Effect Spectroscopy (NOESY) and Rotating Frame Nuclear Overhauser Effect Spectroscopy (ROESY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Glob Imaging Insights. 3: 1-8.
- 253. Heidari A. 2018. 2-Amino-9-((1S, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One, 2-Amino-9-((1R, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One, 2-Amino-9-((1R, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One and 2-Amino-9-((1S, 3R, 4S)-4-Hydroxy-3-

(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin-6(9H)-One-Enhanced Precatalyst Preparation Stabilization and Initiation Nano Molecules. Glob Imaging Insights. 3: 1-9.

- 254. Gobato R, Gobato MRR, Heidari A, et al. 2018. Spectroscopy and Dipole Moment of the Molecule C13H20BeLi2SeSi via Quantum Chemistry Using Ab Initio, Hartree-Fock Method in the Base Set CC-pVTZ and 6-311G\*\*(3df, 3pd). American Journal of Quantum Chemistry and Molecular Spectroscopy. 2: 9-17.
- 255. Heidari A. 2018. Production of Electrochemiluminescence (ECL) Biosensor Using Os-Pd/HfC Nanocomposites for Detecting and Tracking of Human Gastroenterological Cancer Cells, Tissues and Tumors. Int J Med Nano Res. 5: 022-034.
- 256. Heidari A. 2018. Enhancing the Raman Scattering for Diagnosis and Treatment of Human Cancer Cells, Tissues and Tumors Using Cadmium Oxide (CdO) Nanoparticles. J Toxicol Risk Assess. 4: 012-025.
- 257. Heidari A. 2018. Human Malignant and Benign Human Cancer Cells and Tissues Biospectroscopic Analysis under Synchrotron Radiation Using Anti-Cancer Nano Drugs Delivery. Integr Mol Med, Volume 5: 1-13.
- 258. Heidari A. 2018. Analogous Nano Compounds of the Form M(C8H8)2 Exist for M = (Nd, Tb, Pu, Pa, Np, Th, and Yb)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Integr Mol Med. 5: 1-8.
- 259. Heidari A. 2018. Hadron Spectroscopy, Baryon Spectroscopy and Meson Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Integr Mol Med. 5: 1-8.
- 260. Gobato R, Gobato MRR, Heidari A. 2019. Raman Spectroscopy Study of the Nano Molecule C13H20BeLi2SeSi Using ab initio and Hartree-Fock Methods in the Basis Set CC-pVTZ and 6-311G\*\* (3df, 3pd).



Evasion in Cancer DOI: https://doi.org/10.36811/ijho.2021.110019 IJH

IJHO: October-2021: Page No: 414-457

International Journal of Advanced Engineering and Science. 7: 14-35.

- 261. Heidari A, Gobato R. 2019. Evaluating the Effect of Anti-Cancer Nano Drugs Dosage and Reduced Leukemia and Polycythemia Vera Levels on Trend of the Human Blood and Bone Marrow Cancers under Synchrotron Radiation. Trends in Res. 2: 1-8.
- 262. Heidari A, Gobato R. 2019. Assessing the Variety of Synchrotron, Synchrocyclotron and LASER Radiations and Their Roles and Applications in Human Cancer Cells, Tissues and Tumors Diagnosis and Treatment. Trends in Res. 2: 1-8.
- 263. Heidari A, R. Gobato R. 2019. Pros and Cons Controversy on Malignant Human Cancer Cells, Tissues and Tumors Transformation Process to Benign Human Cancer Cells, Tissues and Tumors. Trends in Res. 2: 1-8, 2019.
- 264. Heidari A, R. Gobato R. 2019. Three-Dimensional (3D) Simulations of Human Cancer Cells, Tissues and Tumors for Using in Human Cancer Cells, Tissues and Tumors Diagnosis and Treatment as a Powerful Tool in Human Cancer Cells, Tissues and Tumors Research and Anti-Cancer Nano Drugs Sensitivity and Delivery Area Discovery and Evaluation. Trends in Res. 2: 1-8.
- 265. Heidari A, Gobato R. 2019. Investigation of Energy Production by Synchrotron, Synchrocyclotron and LASER Radiations in Human Cancer Cells, Tissues and Tumors and Evaluation of Their Effective on Human Cancer Cells, Tissues and Tumors Treatment Trend. Trends in Res. 2: 1-8.
- 266. Heidari A, Gobato R. 2019. High-Resolution Mapping of DNA/RNA Hypermethylation and Hypomethylation Process in Human Cancer Cells, Tissues and Tumors under Synchrotron Radiation. Trends in Res. 2: 1-9.
- 267. Heidari A. 2019. A Novel and Comprehensive Study on Manufacturing and Fabrication Nanoparticles Methods and

Techniques for Processing Cadmium Oxide (CdO) Nanoparticles Colloidal Solution. Glob Imaging Insights. 4: 1-8.

- 268. Heidari A. 2019. A Combined Experimental and Computational Study on the Catalytic Effect of Aluminum Nitride Nanocrystal (AlN) on the Polymerization of Benzene, Naphthalene, Anthracene, Phenanthrene, Chrysene and Tetracene. Glob Imaging Insights. 4: 1-8.
- 269. Heidari A. 2019. Novel Experimental and Three-Dimensional (3D) Multiphysics Computational Framework of Michaelis-Menten Kinetics for Catalyst Processes Innovation, Characterization and Carrier Applications. Glob Imaging Insights. 4: 1-8.
- 270. Heidari A. 2019. The Hydrolysis Constants of Copper (I) (Cu+) and Copper (II) (Cu2+) in Aqueous Solution as a Function of pH Using a Combination of pH Measurement and Biospectroscopic Methods and Techniques. Glob Imaging Insights. 4: 1-8.
- 271. Heidari A. 2019. Vibrational Biospectroscopic Study of Ginormous Virus-Sized Macromolecule and Polypeptide Macromolecule as Mega Macromolecules Using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy and Mathematica 11.3. Glob Imaging Insights. 4: 1-8.
- 272. Heidari A. 2019. Three-Dimensional (3D) Imaging Spectroscopy of Carcinoma, Sarcoma, Leukemia, Lymphoma, Multiple Myeloma, Melanoma, Brain and Spinal Cord Tumors, Germ Cell Tumors, Neuroendocrine Tumors and Carcinoid Tumors under Synchrotron Radiation. Glob Imaging Insights. 4: 1-9.
- 273. Gobato R, Gobato MRR, A. Heidari
  A. 2019. Storm Vortex in the Center of Paraná
  State on June 6, 2017: A Case Study.
  Sumerianz Journal of Scientific Research. 2: 24-31.
- 274. Gobato R, Gobato MRR, Heidari A.
  2019. Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) Spectroscopy



**Evasion in Cancer** 

**DOI:** <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

Study of the Nano Molecule C13H20BeLi2SeSi Using ab initio and Hartree-Fock Methods in the Basis Set RHF/CC-pVTZ and RHF/6-311G\*\* (3df, 3pd): An Experimental Challenge to Chemists. Chemistry Reports. 2: 1-26.

- 275. Heidari A. 2019. Three-Dimensional (3D) Imaging Spectroscopy of Carcinoma, Sarcoma, Leukemia, Lymphoma, Multiple Myeloma, Melanoma, Brain and Spinal Cord Tumors, Germ Cell Tumors, Neuroendocrine Tumors and Carcinoid Tumors under Synchrocyclotron Radiation. Res Adv Biomed Sci Technol. 1: 01-17.
- 276. Gobato R, Gobato MRR, Heidari A, et al. 2019. New Nano-Molecule Kurumi-C13H20BeLi2SeSi/C13H19BeLi2SeSi, and Raman Spectroscopy Using ab initio, Hartree-Fock Method in the Base Set CC-pVTZ and 6-311G\*\* (3df, 3pd). J Anal Pharm Res. 8: 1-6.
- 277. Heidari A, Esposito J, Caissutti A. 2019. The Importance of Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and Raman Bio¬spectroscopy of Single-Walled Carbon Nanotubes (SWCNT) and Multi-Walled Carbon Nanotubes (MWCNT) in Interpreting Infrared and Raman Spectra of Human Cancer Cells, Tissues and Tumors. Oncogen. 2: 1-21.
- 278. Heidari A. 2019. Mechanism of Action and Their Side Effects at a Glance Prevention, Treatment and Management of Immune System and Human Cancer Nano Chemotherapy. Nanosci Technol. 6: 1-4.
- 279. Heidari A, Esposito J, Caissutti A. 2019. The Quantum Entanglement Dynamics Induced by Non-Linear Interaction between a Moving Nano Molecule and a Two-Mode Field with Two-Photon Transitions Using Reduced von Neumann Entropy and Jaynes-Cummings Model for Human Cancer Cells, Tissues and Tumors Diagnosis. Int J Crit Care Emerg Med. 5: 71-84.
- 280. Heidari A, Esposito J, Caissutti A.2019. Palytoxin Time-Resolved Absorption and Resonance FT-IR and Raman

Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. J Pharm Drug Res. 3: 150-170.

- 281. Heidari A, Esposito J, Caissutti A. 2019. Aplysiatoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. J Chem Sci Eng. 2: 70-89.
- 282. Heidari A, Esposito J, Caissutti A. 2019. Cyanotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Br J Med Health Res. 6: 21-60.
- 283. Heidari A. 2019. Potential and Theranostics Applications of Novel Anti-Cancer Nano Drugs Delivery Systems in Preparing for Clinical Trials of Synchrotron Microbeam Radiation Therapy (SMRT) and Synchrotron Stereotactic Radiotherapy (SSRT) for Treatment of Human Cancer Cells, Tissues and Tumors Using Image Guided Synchrotron Radiotherapy (IGSR). Ann Nanosci Nanotechnol. 3: 1006-1019.
- 284. Heidari A, Esposito J, Caissutti A. 2019. Study of Anti-Cancer Properties of Thin Layers of Cadmium Oxide (CdO) Nanostructure. Int J Analyt Bioanalyt Methods 1: 3-22.
- 285. Heidari A, Esposito J, Caissutti A. 2019. Alpha-Conotoxin, Omega-Conotoxin and Mu-Conotoxin Time-Resolved Absorption Resonance FT-IR and Raman and Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. International Journal of Advanced Chemistry. 7: 52-66.
- 286. Heidari A. 2019. Clinical and Medical Pros and Cons of Human Cancer Cells' Enzymotherapy, Immunotherapy, Chemotherapy, Radiotherapy, Hormone



**Evasion in Cancer** 

**DOI:** <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

Therapy and Targeted Therapy Process under Synchrotron Radiation: A Case Study on Mechanism of Action and Their Side Effects. Parana Journal of Science and Education (PJSE). 5: 1-23.

- 287. Heidari A. 2019. The Importance of the Power in CMOS Inverter Circuit of Synchrotron and Synchrocyclotron Radiations Using 50 (nm) and 100 (nm) Technologies and Reducing the Voltage of Power Supply. Radiother Oncol Int. 1: 1002-1015.
- 288. Heidari, J. Esposito, A. Caissutti, "The Importance of Quantum Hydrodynamics (QHD) Approach to Single-Walled Carbon Nanotubes (SWCNT) and Multi-Walled Carbon Nanotubes (MWCNT) in Genetic Science", SCIOL Genet Sci. 2 (1): 113-129, 2019.
- 289. Heidari A, Esposito J, Caissutti A. 2019. Anatoxin-a and Anatoxin-a(s) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Saudi J Biomed Res. 4: 174-194.
- 290. Gobato R, Gobato MRR, Heidari A, 2019. Evidence of Tornado Storm Hit the Counties of Rio Branco do Ivaí and Rosario de Ivaí, Southern Brazil. Sci Lett. 7: 32-40.
- 291. Jeyaraj M, Mahalingam V, Indhuleka A, et al. 2019. Chemical Analysis of Surface Water Quality of River Noyyal Connected Tank in Tirupur District, Tamil Nadu, India. Water and Energy International. 62: 63-68.
- Heidari A, Esposito J, Caissutti A. 292. 6-Methoxy-8-[[6-Methoxy-8-[[6-2019. Methoxy-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isoquinolin-7-yl] Oxy]-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isoquinolin-7-yl] Oxy]-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isoquinolin-7ol Time-Resolved Absorption and Resonance Biospectroscopy FT-IR and Raman and

Investigation of Vibronic-Mode Coupling

Theory

(DFT)

Functional

Structure in Vibrational Spectra Analysis. J. Adv. Phys. Chem. 1: 1-6.

- 293. Heidari A, Esposito J, Caissutti A. 2019. Shiga Toxin and Shiga-Like Toxin (SLT) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Annal Biostat & Biomed Appli. 2: 1-4.
- 294. Heidari A, Esposito J, Caissutti A. Alpha-Bungarotoxin, 2019. Beta-Bungarotoxin and Kappa-Bungarotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Archives of Pharmacology and Pharmaceutical Sciences, ReDelve. 1: 1-24.
- 295. Heidari A, Esposito J, Caissutti A. 2019. Okadaic Acid Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Int J Analyt Bioanalyt Methods. 1: 1-19.
- 296. Heidari A. 2019. Investigation of the Processes of Absorption, Distribution, Metabolism and Elimination (ADME) as Vital and Important Factors for Modulating Drug Action and Toxicity. Open Access J Oncol. 2: 180010-180012.
- 297. Heidari A, Esposito J, Caissutti A. 2019. Pertussis Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Chemistry Reports. 1: 1-5.
- 298. Gobato R, Gobato MRR, Heidari A.2019. Rhodochrosite as Crystal Oscillator. Am J Biomed Sci & Res. 3: 187.
- 299. Heidari A, Esposito J, Caissutti A.2019. Tetrodotoxin (TTX) Time-Resolved

Density



**Evasion in Cancer** 

**DOI:** <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Journal of New Developments in Chemistry. 3: 26-48.

- Heidari A, Esposito J, Caissutti A. 300. The Importance of Analysis 2019. of Coupling Structure Vibronic-Mode in Vibrational Spectra of Supramolecular Aggregates of (CA\*M) Cyanuric Acid (CA) and Melamine (M) beyond the Franck-Condon Approximation", Journal of Clinical and Medical Images. 2: 1-20.
- 301. Heidari A, Esposito J, Caissutti A. 2019. Microcystin-LR Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Malaysian Journal of Chemistry. 21: 70-95.
- 302. Heidari A, Esposito J, Caissutti A. 2019. Botulinum Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Journal of Mechanical Design and Vibration. 1: 1-15.
- 303. Heidari A, Esposito J, Caissutti A. 2019. Domoic Acid (DA) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Clinical Oncology Journal. 2: 03-07.
- 304. Heidari A, Esposito J, Caissutti A.
  2019. Surugatoxin (SGTX) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Clinical Oncology Journal.
  2: 14-18.

- 305. Heidari A, Esposito J, Caissutti A. 2019. Decarbamoylsaxitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Clinical Oncology Journal 1. 2: 19-23.
- 306. Heidari A, Esposito J, Caissutti A. 2019. Gonyautoxin (GTX) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Clinical Oncology Journal. 2: 24-28.
- 307. Heidari A, Esposito J, Caissutti A. 2019. Hislrionicotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Drug Delivery Research.1: 01-06.
- 308. Heidari A, Esposito J, Caissutti A. 2019. Dihydrokainic Acid Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Drug Delivery Research. 1: 07-12.
- 309. Heidari A, Esposito J, Caissutti A.
  2019. Aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1), G2 (AFG2), M1 (AFM1), M2 (AFM2), Q1 (AFQ1) and P1 (AFP1) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Drug Delivery Research. 1: 25-32.
- Heidari A, Esposito J, Caissutti A.
  2019. Mycotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional



Evasion in Cancer DOI: https://doi.org/10.36811/ijho.2021.110019 IJH

IJHO: October-2021: Page No: 414-457

Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Drug Delivery Research. 1: 13-18.

- 311. Heidari A, Esposito J, Caissutti A. 2019. Bufotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Drug Delivery Research. 1: 19-24.
- 312. Heidari A, Esposito J, Caissutti A. 2019. Kainic Acid (Kainite) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Journal of Neurology 1. 2: 02-07.
- 313. Heidari A, Esposito J, Caissutti A. 2019. Nereistoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Journal of Neurology. 2: 19-24.
- 314. Heidari A, Esposito J, Caissutti A. 2019. Spider Toxin and Raventoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Parana Journal of Science and Education. 5: 1-28.
- 315. Heidari A, Esposito J, Caissutti A.
  2019. Ochratoxin A, Ochratoxin B, Ochratoxin C, Ochratoxin α and Ochratoxin TA Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Drug Delivery Research. 2: 03-10.

- 316. Heidari A, Esposito J, Caissutti A. 2019. Brevetoxin A and B Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Drug Delivery Research. 2: 11-16.
- 317. Heidari A, Esposito J, Caissutti A. 2019. Lyngbyatoxin-a Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Drug Delivery Research. 2: 23-28.
- 318. Heidari A, Esposito J, Caissutti A. 2019. Balraechotoxin (BTX) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Journal of Neurology. 1. 3: 01-05.
- 319. Heidari A, Esposito J, Caissutti A. 2019. Hanatoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Int. J. Pharm. Sci. 57: 21-32.
- 320. Heidari A, Esposito J, Caissutti A. 2019. Neurotoxin and Alpha-Neurotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. J Biomed Sci & Res. 3: 550-563.
- 321. Heidari A, Esposito J, Caissutti A. 2019. Antillatoxin (ATX) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure. American Journal of Optics and Photonics. 7: 18-27.



**Evasion in Cancer** 

**DOI:** <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

- 322. Gobato R, Gobato MRR, Heidari A.
  2019. Calculation by UFF Method of Frequencies and Vibrational Temperatures of the Unit Cell of the Rhodochrosite Crystal. International Journal of Advanced Chemistry. 7: 77-81.
- 323. Heidari A, Esposito J, Caissutti A. 2019. Analysis of Vibronic-Mode Coupling Structure in Vibrational Spectra of Fuzeon as a 36 Amino Acid Peptide for HIV Therapy beyond the Multi-Dimensional Franck-Condon Integrals Approximation. International Journal of Advanced Chemistry. 7: 82-96.
- 324. Heidari A, Esposito J, Caissutti A. 2019. Debromoaplysiatoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Applied Chemistry. 2: 17-54.
- 325. Heidari A, Esposito J, Caissutti A. 2019. Enterotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. JRL J Sci Technol. vol1-iss2: jst1001. 1-16.
- 326. Gobato R, Gobato MRR, Heidari A, et al. 2019. Rhodochrosite Optical Indicatrix. Peer Res Nest. 1: 1-2.
- 327. Heidari A, Esposito J, Caissutti A. 2019. Anthrax Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Research & Reviews: Journal of Computational Biology. 8: 23-51.
- 328. Heidari A, Esposito J, Caissutti A. 2019. Kalkitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Can J Biomed Res & Tech. 2: 1-21.

- 329. Heidari A, Esposito J, Caissutti A. 2019. Neosaxitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Clin Case Studie Rep. 2: 1-14.
- Heidari A, Esposito J, Caissutti A. 330. 6-Methoxy-8-[[6-Methoxy-8-[[6-2019. Methoxy-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isoquinolin-7-yl] Oxy]-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isoquinolin-7-yl] Oxy]-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isoquinolin-7ol Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Clin Case Studie Rep. 2: 1-14.
- 331. Heidari A. 2019. Comparison of Synchrotron Radiation and Synchrocyclotron Radiation Performance in Monitoring of Human Cancer Cells, Tissues and Tumors. Clin Case Studie Rep. 2: 1-12.
- 332. Heidari A, Esposito J, Caissutti A. 2019. Kalkitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Clin Case Studie Rep. 2: 1-14.
- 333. Heidari A, Esposito J, Caissutti A. 2019. Diphtheria Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis: A Spectroscopic Study on an Anti-Cancer Drug. Clin Case Studie Rep. 2: 1-14.
- 334. Heidari A, Esposito J, Caissutti A. 2019. Symbiodinolide Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode



Evasion in Cancer DOI: https://doi.org/10.36811/ijho.2021.110019 IJH

IJHO: October-2021: Page No: 414-457

Coupling Structure in Vibrational Spectra Analysis. Clin Case Studie Rep. 2: 1-14.

- Heidari A, Esposito J, Caissutti A. 335. 2019. Saxitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Vibronic-Mode Theory Investigation of Coupling Structure in Vibrational Spectra Analysis. Am J Exp Clin Res. 6: 364-377.
- 336. Gobato R, Gobato MRR, A. Heidari A, et al. 2019. Hartree-Fock Methods Analysis Protonated Rhodochrosite Crystal and Potential in the Elimination of Cancer Cells through Synchrotron Radiation", Radiation Science and Technology. 5: 27-36.
- 337. Gobato R, Dosh IKK, Heidari A. et al. Perspectives on the Elimination of Cancer Cells Using Rhodochrosite Crystal Through Synchrotron Radiation, and Absorption the Tumoral and Non-Tumoral Tissues. Arch Biomed Eng & Biotechnol. 3: 1-2.
- 338. Gobato R, Gobato MRR, Heidari A. et al. 2019. Unrestricted Hartree-Fock Computational Simulation in a Protonated Rhodochrosite Crystal. Phys Astron Int J. 3: 220-228.
- Heidari A, Schmitt K, Henderson M, 339. et al. 2019. Perspectives on Sub-Nanometer Level of Electronic Structure of the Synchrotron with Mendelevium Nanoparticles for Elimination of Human Cancer Cells, Tissues and Tumors Treatment Using Mathematica 12.0. Journal of Energy Conservation. 2: 46-73.
- 340. Heidari A, Schmitt K, Henderson M, et al. 2019. Simulation of Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Bohrium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment", Current Research in Biochemistry and Molecular Biology. 1: 17-44.
- 341. Heidari A, Schmitt K, Henderson M, et al. 2019. Investigation of Interaction between Synchrotron Radiation and Thulium

Nanoparticles for Human Cancer Cells, Tissues and Tumors Treatment", European Journal of Scientific Exploration. 2: 1-8.

- 342. Heidari A, Schmitt K, Henderson M, et al. 2020. The Effectiveness of the Treatment Human Cancer Cells, Tissues and Tumors Using Darmstadtium Nanoparticles and Synchrotron Radiation. International Journal of Advanced Engineering and Science. 9: 9-39.
- 343. Heidari A, Schmitt K, Henderson M, et al. 2019. Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment in Simulation of Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Uranium Nanoparticles", Nano Prog. 1: 1-6.
- 344. Heidari A, Schmitt K, Henderson M, et al. 2019. A New Approach to Interaction between Beam Energy and Erbium Nanoparticles. Saudi J Biomed Res. 4: 372-396.
- 345. Heidari A, Schmitt K, Henderson M, et al. 2019. Consideration of Energy Functions and Wave Functions of the Synchrotron Radiation and Samarium Nanoparticles Interaction During Human Cancer Cells, Tissues and Tumors Treatment Process. Sci. Int. (Lahore). 31: 885-908.
- 346. Heidari A, Schmitt K, Henderson M, et al. 2019. An Outlook on Optothermal Human Cancer Cells, Tissues and Tumors Treatment Using Lanthanum Nanoparticles under Synchrotron Radiation. Journal of Materials Physics and Chemistry. 7: 29-45.
- 347. Heidari A, Schmitt K, Henderson M, et al. 2019. Effectiveness of Einsteinium Nanoparticles in Optothermal Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation. Journal of Analytical Oncology. 8: 43-62.
- 348. Heidari A, Schmitt K, Henderson M, et al. 2019. Study of Relation between Synchrotron Radiation and Dubnium Nanoparticles in Human Cancer Cells, Tissues



Evasion in Cancer DOI: https://doi.org/10.36811/ijho.2021.110019 IJH

IJHO: October-2021: Page No: 414-457

and Tumors Treatment Process. Int. Res. J. Applied Sci. 4: 1-20.

- 349. Heidari A, Schmitt K, Henderson M, et al. 2019. A Novel Prospect on Interaction of Synchrotron Radiation Emission and Europium Nanoparticles for Human Cancer Cells, Tissues and Tumors Treatment. European Modern Studies Journal. 3: 11-24.
- Heidari A, Esposito J, Caissutti A. 350. 2019. The Importance of Analysis of Vibronic-Mode Coupling Structure in Spectra Supramolecular Vibrational of Aggregates of (CA\*M) Cyanuric Acid (CA) and Melamine (M) beyond the Franck-Condon Approximation", Journal of Clinical and Medical Images. 2: 1-20.
- 351. Heidari A, Esposito J, Caissutti A. 2019. Microcystin-LR Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Malaysian Journal of Chemistry. 21: 70-95.
- 352. Heidari A, Esposito J, Caissutti A. 2019. Botulinum Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Journal of Mechanical Design and Vibration. 1: 1-15.
- 353. Heidari A, Esposito J, Caissutti A. 2019. Domoic Acid (DA) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Clinical Oncology Journal. 2: 03-07.
- 354. Heidari A, Esposito J, Caissutti A. 2019. Surugatoxin (SGTX) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra

Analysis. Cientific Clinical Oncology Journal. 2: 14-18.

- 355. Heidari A, Esposito J, Caissutti A. 2019. Decarbamoylsaxitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Clinical Oncology Journal 1. 2: 19-23.
- 356. Heidari A, Esposito J, Caissutti A. 2019. Gonyautoxin (GTX) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Clinical Oncology Journal. 2: 24-28.
- 357. Heidari A, Esposito J, Caissutti A. 2019. Hislrionicotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Drug Delivery Research.1: 01-06.
- 358. Heidari A, Esposito J, Caissutti A. 2019. Dihydrokainic Acid Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Drug Delivery Research. 1: 07-12.
- 359. Heidari A, Esposito J, Caissutti A. 2019. Aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1), G2 (AFG2), M1 (AFM1), M2 (AFM2), Q1 (AFQ1) and P1 (AFP1) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Drug Delivery Research. 1: 25-32.
- 360. Heidari A, Esposito J, Caissutti A.2019. Mycotoxin Time-Resolved Absorption



**Evasion in Cancer** 

DOI: https://doi.org/10.36811/ijho.2021.110019

IJHO: October-2021: Page No: 414-457

and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Drug Delivery Research. 1: 13-18.

- 361. Heidari A, Esposito J, Caissutti A. 2019. Bufotoxin Time-Resolved Absorption Resonance FT-IR and Raman and Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Drug Delivery Research. 1: 19-24.
- 362. Heidari A, Esposito J, Caissutti A. 2019. Kainic Acid (Kainite) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Journal of Neurology 1. 2: 02-07.
- 363. Heidari A, Esposito J, Caissutti A. 2019. Nereistoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Journal of Neurology. 2: 19-24.
- 364. Heidari A, Esposito J, Caissutti A. 2019. Spider Toxin and Raventoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Parana Journal of Science and Education. 5: 1-28.
- 365. Heidari A, Esposito J, Caissutti A.
  2019. Ochratoxin A, Ochratoxin B, Ochratoxin C, Ochratoxin α and Ochratoxin TA Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in

Vibrational Spectra Analysis. Cientific Drug Delivery Research. 2: 03-10.

- 366. Heidari A, Esposito J, Caissutti A. 2019. Brevetoxin A and B Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Drug Delivery Research. 2: 11-16.
- 367. Heidari A, Esposito J, Caissutti A. 2019. Lyngbyatoxin-a Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Drug Delivery Research. 2: 23-28.
- 368. Heidari A, Esposito J, Caissutti A. 2019. Balraechotoxin (BTX) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Cientific Journal of Neurology. 1. 3: 01-05.
- 369. Heidari A, Esposito J, Caissutti A. 2019. Hanatoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Int. J. Pharm. Sci. 57: 21-32.
- 370. Heidari A, Esposito J, Caissutti A. 2019. Neurotoxin and Alpha-Neurotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. J Biomed Sci & Res. 3: 550-563.
- 371. Heidari A, Esposito J, Caissutti A.
  2019. Antillatoxin (ATX) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode



**Evasion in Cancer** 

**DOI:** <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

Coupling Structure. American Journal of Optics and Photonics. 7: 18-27.

- 372. Gobato R, Gobato MRR, Heidari A.
  2019. Calculation by UFF Method of Frequencies and Vibrational Temperatures of the Unit Cell of the Rhodochrosite Crystal. International Journal of Advanced Chemistry. 7: 77-81.
- 373. Heidari A, Esposito J, Caissutti A. 2019. Analysis of Vibronic-Mode Coupling Structure in Vibrational Spectra of Fuzeon as a 36 Amino Acid Peptide for HIV Therapy beyond the Multi-Dimensional Franck-Condon Integrals Approximation. International Journal of Advanced Chemistry. 7: 82-96.
- 374. Heidari A, Esposito J, Caissutti A. 2019. Debromoaplysiatoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Applied Chemistry. 2: 17-54.
- 375. Heidari A, Esposito J, Caissutti A. 2019. Enterotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. JRL J Sci Technol. vol1-iss2: jst1001. 1-16.
- 376. Gobato R, Gobato MRR, Heidari A, et al. 2019. Rhodochrosite Optical Indicatrix. Peer Res Nest. 1: 1-2.
- 377. Heidari A, Esposito J, Caissutti A. 2019. Anthrax Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Research & Reviews: Journal of Computational Biology. 8: 23-51.
- 378. Heidari A, Esposito J, Caissutti A. 2019. Kalkitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode

Coupling Structure in Vibrational Spectra Analysis. Can J Biomed Res & Tech. 2: 1-21.

- 379. Heidari A, Esposito J, Caissutti A.
  2019. Neosaxitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Clin Case Studie Rep. 2: 1-14.
- 380. Heidari A, Esposito J, Caissutti A. 6-Methoxy-8-[[6-Methoxy-8-[[6-2019. Methoxy-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isoquinolin-7-yl] Oxy]-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isoquinolin-7-yl] Oxy]-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isoquinolin-7ol Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Clin Case Studie Rep. 2: 1-14.
- 381. Heidari A. 2019. Comparison of Synchrotron Radiation and Synchrocyclotron Radiation Performance in Monitoring of Human Cancer Cells, Tissues and Tumors. Clin Case Studie Rep. 2: 1-12.
- 382. Heidari A, Esposito J, Caissutti A. 2019. Kalkitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Clin Case Studie Rep. 2: 1-14.
- 383. Heidari A, Esposito J, Caissutti A. 2019. Diphtheria Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis: A Spectroscopic Study on an Anti-Cancer Drug. Clin Case Studie Rep. 2: 1-14.
- 384. 285. Heidari A, Esposito J, Caissutti
  A. 2019. Symbiodinolide Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional



**Evasion in Cancer** 

**DOI:** <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Clin Case Studie Rep. 2: 1-14.

- Heidari A, Esposito J, Caissutti A. 385. 2019. Saxitoxin Time-Resolved Absorption FT-IR and and Resonance Raman Biospectroscopy and Density Functional Theory Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Am J Exp Clin Res. 6: 364-377.
- 386. Gobato R, Gobato MRR, A. Heidari A, et al. 2019. Hartree-Fock Methods Analysis Protonated Rhodochrosite Crystal and Potential in the Elimination of Cancer Cells through Synchrotron Radiation", Radiation Science and Technology. 5: 27-36.
- 387. Gobato R, Dosh IKK, Heidari A. et al. Perspectives on the Elimination of Cancer Cells Using Rhodochrosite Crystal Through Synchrotron Radiation, and Absorption the Tumoral and Non-Tumoral Tissues. Arch Biomed Eng & Biotechnol. 3: 1-2.
- 388. Gobato R, Gobato MRR, Heidari A. et al. 2019. Unrestricted Hartree-Fock Computational Simulation in a Protonated Rhodochrosite Crystal. Phys Astron Int J. 3: 220-228.
- 389. Heidari A, Schmitt K, Henderson M, et al. 2019. Perspectives on Sub-Nanometer Level of Electronic Structure of the Synchrotron with Mendelevium Nanoparticles for Elimination of Human Cancer Cells, Tissues and Tumors Treatment Using Mathematica 12.0. Journal of Energy Conservation. 2: 46-73.
- 390. Heidari A, Schmitt K, Henderson M, et al. 2019. Simulation of Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Bohrium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment", Current Research in Biochemistry and Molecular Biology. 1: 17-44.
- 391. Heidari A, Schmitt K, Henderson M, et al. 2019. Investigation of Interaction

between Synchrotron Radiation and Thulium Nanoparticles for Human Cancer Cells, Tissues and Tumors Treatment", European Journal of Scientific Exploration. 2: 1-8.

- 392. Heidari A, Schmitt K, Henderson M, et al. 2020. The Effectiveness of the Treatment Human Cancer Cells, Tissues and Tumors Using Darmstadtium Nanoparticles and Synchrotron Radiation. International Journal of Advanced Engineering and Science. 9: 9-39.
- 393. Heidari A, Schmitt K, Henderson M, et al. 2019. Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment in Simulation of Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Uranium Nanoparticles", Nano Prog. 1: 1-6.
- 394. Heidari A, Schmitt K, Henderson M, et al. 2019. A New Approach to Interaction between Beam Energy and Erbium Nanoparticles. Saudi J Biomed Res. 4: 372-396.
- 395. Heidari A, Schmitt K, Henderson M, et al. 2019. Consideration of Energy Functions and Wave Functions of the Synchrotron Radiation and Samarium Nanoparticles Interaction During Human Cancer Cells, Tissues and Tumors Treatment Process. Sci. Int. (Lahore). 31: 885-908.
- 396. 297. Heidari A, Schmitt K, Henderson M, et al. 2019. An Outlook on Optothermal Human Cancer Cells, Tissues and Tumors Treatment Using Lanthanum Nanoparticles under Synchrotron Radiation. Journal of Materials Physics and Chemistry. 7: 29-45.
- 397. Heidari A, Schmitt K, Henderson M, et al. 2019. Effectiveness of Einsteinium Nanoparticles in Optothermal Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation. Journal of Analytical Oncology. 8: 43-62.
- 398. Heidari A, Schmitt K, Henderson M, et al. 2019. Study of Relation between Synchrotron Radiation and Dubnium



Evasion in Cancer DOI: https://doi.org/10.36811/ijho.2021.110019 IJH

IJHO: October-2021: Page No: 414-457

Nanoparticles in Human Cancer Cells, Tissues and Tumors Treatment Process. Int. Res. J. Applied Sci. 4: 1-20.

- 399. Heidari A, Schmitt K, Henderson M, et al. 2019. A Novel Prospect on Interaction of Synchrotron Radiation Emission and Europium Nanoparticles for Human Cancer Cells, Tissues and Tumors Treatment. European Modern Studies Journal. 3: 11-24.
- 400. Heidari A, Schmitt K, Henderson M, et al. 2020. Study of Copernicium Nanoparticles Delivery Process in Human Cancer Cells, Tissues and
- 401. Tumors Under Gravitationally Accelerating Ions Through the Super Contorted 'Tubular' Polar Areas of Magnetic Fields. Adv. Sci. Eng. Med. 12: 571-575.
- 402. Heidari A, Schmitt K, Henderson M, et al. 2020. Specific and Selective Targeting Human Cancer Cells, Tissues and Tumors with Seaborgium Nanoparticles as Carriers and Nano-Enhanced Drug Delivery and Therapeutic in Cancer Treatment and Beyond under Synchrotron Radiation. Parana Journal of Science and Education. 6: 8-50.
- 403. Heidari A. 2020. Enhancement of Visible Synchrotron Absorption in Cadmium Oxide (CdO) Nanoparticles Thin Layer Using Plasmonic Nanostructures: A Two-Dimensional (2D) Simulation. Sci. Int. (Lahore). 32: 329-354.
- 404. Heidari A, Schmitt K, Henderson M, et al. 2020. Nanomedicines Based Americium Nanoparticles Drug Delivery Systems for Anti-Cancer Targeting and Treatment under Synchrotron Radiation. Dent Oral Maxillofac Res. 6: 1-18.
- 405. Heidari A, Schmitt K, Henderson M, et al. 2020. Study of Exclusively Focused on Translational Aspects of Praseodymium Nanoparticles Drug Delivery under Super Contorted Tubular Polar Areas of Magnetic Fields as Optothermal Human Gum Cancer Cells, Tissues and Tumors Treatment Technique under Synchrotron Radiation. Dent Oral Maxillofac Res. 6: 1-17.

- 406. Heidari A, Schmitt K, Henderson M, et al. 2020. Research Activities on Novel Drug Delivery Systems of Astatine Nanoparticles in Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation. Dent Oral Maxillofac Res. 6:1-17.
- 407. Heidari A, Schmitt K, Henderson M, et al. 2020. Unprecedented Progresses of Biomedical Nanotechnology during Conventional Smart Drug Delivery Systems (SDDSs) of Francium Nanoparticles in Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation. Dent Oral Maxillofac Res. 6: 1-20.
- 408. Heidari A, Schmitt K, Henderson M, et al. 2020. Non-Invasive Image-Guided Targeted Drug Delivery of Radium Nanoparticles in Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation. Dent Oral Maxillofac Res. 6:1-20.
- 409. Heidari A. 2018. A Novel Approach to Reduce Toxicities and to Improve Bioavailabilities of DNA/RNA of Human Cancer Cells-Containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ9-Tetrahydrocannabinol (THC) [(-)trans- $\Delta^{9}$ -Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as Anti-Cancer Nano Drugs by Coassembly of Dual Anti-Cancer Nano Drugs to Inhibit DNA/RNA of Human Cancer Cells Drug Resistance. Ely J Mat Sci Tech. 1: 1-2.
- 410. Heidari A. 2020. Investigation of Prevention, Protection and Treatment of Lopinavir Effectiveness on Coronavirus Disease-2019 (COVID-19) Infection Using Fourier Transform Raman (FT-Raman) Biospectroscopy. AJAN. 1: 36-60.
- 411. Heidari A. 2020. Stimulated FT-IR Biospectroscopic Study of Lopinavir Protective and Therapeutic Effect as a Potent Drug on Coronavirus Disease-2019 (COVID-19) Infection. AJAN. 1: 61-85.



**Evasion in Cancer** 

**DOI:** <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

- 412. Heidari A, Gobato R. 2020. The Comparison of Active Cooperative and Traditional Teaching Methods in Nanoch emistry Students' Satisfaction and Learning of Clinical Nanochemistry. AJAN. 1: 86-112.
- 413. Heidari A, Gobato R. 2020. Study of Nanochemistry Students' Satisfaction and Learning with Blended Education: An Action Research Study. AJAN. 1: 113-138.
- 414. Heidari A. 2020. Study of Stimulated Raman Biospectroscopy in Lopinavir as a Potent Drug against Coronavirus Disease-2019 (COVID-19) Infection. AJAN. 1: 139-163.
- 415. Heidari A. In Situ Monitoring of Ritonavir Protective and Therapeutic Influence as a Potent Drug on Coronavirus Disease-2019 (COVID-19) Infection by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR Fingerprint) Biospectroscopy. Saudi J Biomed Res. 5: 128-151.
- 416. Heidari A. 2020. A Stimulated FT-IR Biospectroscopic Study of Ritonavir Protective and Therapeutic Effect as a Potent Drug on Coronavirus Disease-2019 (COVID-19) Infection. Saudi J Biomed Res. 5: 152-174.
- 417. Heidari A. 2020. Application of Single-Walled Carbon Nanotubes (SWCNT) in the Production of Glucose Biosensors and Improving Their Performance Using Gold Colloidal Nanoparticles and Usage of Polyaniline Nanostructure-Based Biosensors for Detecting Glucose and Cholesterol. Malaysian Journal of Chemistry, Vol. 22: 121-162.
- 418. Heidari A. 2020. In Situ Monitoring of Lopinavir and Therapeutic Protective Influence as a Potent Drug on Coronavirus Disease-2019 (COVID-19) Infection bv **Reflectance-Fourier** Attenuated Total Transform Infrared (ATR-FTIR Fingerprint) Biospectroscopy. Parana Journal of Science and Education (PJSE). 6: 29-60.
- 419. Heidari A, Schmitt K, Henderson M, et al. 2020. Modelling and Simulation of Interaction of Magnetobremsstrahlung Radiation and Nihonium Nanoparticles Using

Bending Magnets, Undulators and/or Wigglers in Storage Rings for Human Cancer Cells, Tissues and Tumors Treatment. Sci. Int. (Lahore). 32: 361-385.

- 420. Heidari A. 2020. Oncological Study of Thin Layers of Imatinib Molecule Nanostructure for Chronic **Myelogenous** Leukemia (CML), Acute Lymphocytic Leukemia (ALL), Philadelphia Chromosome-Positive (Ph+), Gastrointestinal Stromal Tumors (GIST), Hypereosinophilic Syndrome (HES), Chronic Eosinophilic Leukemia (CEL), Systemic Mastocytosis and Myelodysplastic Syndrome Treatment. Adv. Sci. Eng. Med. 12: 753-760.
- Heidari A. 2019. Infrastructure of 421. Synchrotronic Biosensor Based on Semiconductor Device Fabrication for Tracking, Monitoring, Imaging, Measuring, Di-agnosing and Detecting Cancer Cells. Semiconductor Science and Information Devices. 2: 29-57.
- 422. Heidari A. 2020. In Situ Characterization of Lopinavir by ATR-FTIR Biospectroscopy. Comp utational Chemistry. 8: 27-42.
- 423. Heidari A. 2020. Study of Stimulated Raman Biospectroscopy in Ritonavir as a Potent Drug against Coronavirus Disease-2019 (COVID-19) Infection. Saudi J Biomed Res. 5: 188-211.
- 424. Heidari A. 2020. Investigation of Prevention, Protection and Treatment of Ritonavir Effectiveness on Coronavirus Disease-2019 (COVID-19) Infection Using Fourier Transform Raman (FT-Raman) Biospectroscopy. Saudi J Biomed Res. 5: 212-235.
- 425. Gobato R, Heidari A. 2020. Cyclone Bomb Hits Southern Brazil in Mid-Winter 2020. Journal of Atmospheric Science Research. 3: 8-12.
- 426. Heidari A. 2020. A Biospectroscopic and Bioimaging Analysis of Imatinib Nanoparticles Aggregation Linked to DNA/RNA by Bcr-Abl Tyrosine-Kinase



**Evasion in Cancer** 

DOI: <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

Inhibitors (TKI) with Various Chain Length. Sci. Int. (Lahore). 32: 459-482.

- 427. Heidari A. 2019. Future Perspectives and Shaping Trends in Gastroenterology and Digestive Disorders. J Health Med Res. 1: 47-48.
- 428. Heidari A. 2020. Latest Research Works and Innovations in the Field of Oncology. J Carcinog Mutagen. 11: 126.
- 429. Heidari A. 2020. Investigating the Effect of Synchrotron Removal from Raman Spectra for Quantitative Analysis of Cancer Tissues. Current Research in Cytology and Histology. 1: 29-35.
- 430. Gobato R, Gobato MRR, Heidari A.
  2020. Potential in the Elimination of Cancer Cells through Synchrotron Radiation: A Hartree-Fock Methods Analysis Protonated Rhodochrosite Crystal. Dent Oral Maxillofac Res. 6: 1-8.
- 431. Heidari A, Gobato R. 2020. Infrared Spectrum, Apt Charges and Mulliken of Hartreefock Methods Protonated Rhodochrosite Crystal. Dent Oral Maxillofac Res. 6: 1-8.
- 432. Gobato R, Dosh IKK, Heidari A, et al.
  2020. A Novel and Exquisite Approach to Single Layer Bioinorganic Membranes. Dent Oral Maxillofac Res. 6: 1-4.
- 433. Heidari A. 2020. Manufacture of Synchrotronic Biosensor Using Os-Pd/HfC Nanocomposite for Tracking, Monitoring, Imaging, Measuring, Diagnosing and Detecting Cancer Cells. Journal of Clinical and Translational Oncology. 1: 20-26.
- 434. Heidari A. 2020. Role and Applications of Synchrotron Removal from Raman Spectra for Quantitative Analysis of Cancer Tissues. Aswan University Journal of Environmental Studies (AUJES). 1: 57-96.
- 435. Heidari A. 2020. Investigation of Role and Applications of Polymeric Stimuli-Responsive Nanocomposite Materials as Biomolecules for Cancer Targeted in Anti-Cancer Nano Drugs Delivery Agents and

Systems. Parana Journal of Science and Education (PJSE). 6: 39-74.

- 436. Gobato R, Heidari, A, Mitra A, et al.
  2020. Vortex Cotes's Spiral in an Extratropical Cyclone in the Southern Coast of Brazil", Archives in Biomedical Engineering & Biotechnology. 4: 1-4.
- 437. Gobato R, Heidari A. 2020. Vortex Hits Southern Brazil in 2020. J Cur Tre Phy Res. 2: 109-112.
- 438. Heidari A. 2020. Synthesis of Fructose Biosensors and Progressing Their Efficiency Using Californium Colloidal Nanoparticles for Detecting Fructose and Triglycerides. Adv. Sci. Eng. Med. 12: 1002-1017.
- 439. Gobato R, Heidari A, Mitra A, et al.
  2019. Cotes's Spiral Vortex in Extratropical Cyclone Bomb South Atlantic Oceans. Aswan University Journal of Environmental Studies (AUJES). 1: 147-156.
- 440. Heidari A. 2019. Young Researcher Forum for 2nd World Congress on Neurology. J Neurol Neurophysiol. 10: 4.
- 441. Heidari A. 2020. World Congress on Health and Medical Science", Journal of Emerging Diseases and Preventive Medicine. 3: 1.
- 442. Heidari A. 2019. Scientific Challenges and Recent Advancements of Dermatology and Cosmetology", J Clin Exp Pathol. 3: 9.
- 443. Gobato R, Heidari, Mitra A. 2021. Bioinorganic Membrane Using Kurumi, A New Liquid Crystal", Sumerianz Journal of Biotechnology. 4: 4-7.
- 444. Heidari A. 2021. A Stimulated FT-IR Biospectroscopic Study of Lopinavir Protective and Therapeutic Effect as a Potent Drug on Coronavirus Disease-2019 (COVID-19) Infection. Parana Journal of Science and Education (PJSE)-v. 7: 1-33.
- 445. Heidari A. 2021. Simulation of the Variations of Surface Synchrotron Resonance Spectrum of Arranged Cadmium Oxide (CdO) Nanoparticles over Cancer Tissues Matrix with Size and Distance. Parana Journal of Science and Education (PJSE)-v. 7: 34-67.



**Evasion in Cancer** 

**DOI:** <u>https://doi.org/10.36811/ijho.2021.110019</u>

IJHO: October-2021: Page No: 414-457

- 446. Heidari A, Gobato R. 2020. Spherical Paramagnetic Contribution to Shielding Tensor Analysis of Nuclear Magnetic Resonance Signals in Gum Cancer Cells, Tissues and Tumors. Dent Oral Maxillofac Res. 6: 1-2.
- 447. Heidari A, Gobato R. 2020. Exact NMR Simulation of Anti-Cancer Nano Drug-DNA/RNA Complexes in Gum Cancer Cells Spin Systems Using Tensor Train Formalism. Dent Oral Maxillofac Res, Volume. 6: 1-2.
- 448. Heidari A, Gobato R. The Anti-Cancer Nano Drug Delivery 13C-Edited/13C-Filtered Transferred Dynamic 15N{1H} NOE Measurements for Studying DNA/RNA Interactions with Short Non-Linear Motifs: A Modern Tool for Studying DNA/RNA Dynamics in Gum Cancer Cells. Dent Oral Maxillofac Res. 6: 1-2.
- 449. Heidari A. Gobato R. 2020. DNA/RNA of Gum Cancer Cells-Anti-Cancer Nano Drugs Ligands Structure Determination with the Two-Dimensional NMR Molecular Line Shape Analysis of Single, Multiple, Zero Double Ouantum Correlation and Experiments. Dent Oral Maxillofac Res. 6: 1-3.
- 450. Heidari A, Gobato R. 2020. Investigation of the Internal Structure and Dynamics of Gum Cancer Cells, Tissues and Tumors by 13C-NMR Spectra of DNA/RNA of Gum Cancer Cells as an Essential Structural Tool for Integrative Studies of Gum Cancer Cells Development. Dent Oral Maxillofac Res. 6: 1-3.
- 451. Heidari A, Gobato R. 2020. NMR and Molecular Dynamics Studies Combined to Anti-Cancer Nano Drugs and DNA/RNA Interactions in Gum Cancer Cells and Their Modulations with Resistance Mutations. SDent Oral Maxillofac Res. 6: 1-2.
- 452. Heidari A, Gobato R. 2020. Advanced Isotopic Labeling for the NMR Investigation of Challenging DNA/RNA of Gum Cancer Cells and Anti-Cancer Nano Drugs for Production of Isotope-Labeled DNA/RNA in

Gum Cancer Cells for NMR Spectroscopy. Dent Oral Maxillofac Res. 6: 1-3.

- 453. Heidari A, Gobato R. 2020. Simultaneous Detection of Intra- and Inter-Molecular Paramagnetic Relaxation Enhancements in DNA/RNA of Gum Cancer Cells-Anti-Cancer Nano Drugs Complexes. Dent Oral Maxillofac Res. 6: 1-2.
- 454. Heidari A, Gobato R. 2020. Impact of DNA/RNA Self-Alignment in a Strong Magnetic Field on the Interpretation of Indirect Spin-Spin Interactions Using NMR Line Shape Analysis of a Multi-State DNA/RNA Ligand Binding Mechanism in Gum Cancer Cells. Dent Oral Maxillofac Res. 6: 1-2.
- 455. Heidari A. Gobato R. 2020. Application of Anti-Cancer Nano Drugs Particles (ACNDP) to NMR Characterization of Viral Gum Cancer Cell Membrane for Extracting DNA/RNA Interactions Dynamics Information DNA/RNA from Overlapped NMR Signals Using Relaxation Dispersion Difference NMR Spectroscopy. Dent Oral Maxillofac Res. 6: 1-2.
- 456. Heidari A, Gobato R. 2020. Diagnosis of Gum Cancer Cells from DNA/RNA Us ing Database Mining and Support Vector Regression through High Resolution 4D HPCH Experiment for Sequential Assignment of 13C-Labeled DNAs/RNAs in Gum Cancer Cells. Dent Oral Maxillofac Res. 6: 1-2.
- 457. Heidari A, Gobato R. 2020. New Opportunities for Tensor-Free Calculations of Residual Dipolar Couplings for the Study of Dynamic Nuclear Polarization of Nucleic Acids with Endogenously Bound Manganese in Gum Cancer Cells. Dent Oral Maxillofac Res. 6: 1-2.
- 458. Heidari A. 2021. Pros and Cons Controversy on Synchrotronic Biosensor Using Os-Pd/HfC Nanocomposite for Tracking, Monitoring, Imaging, Measuring, Diagnosing and Detecting Cancer Cells, Tissues and Tumors. Indones. J. Cancer Chemoprevent. 12: 1-10.



Mechanistic Basis and Therapeutic Strategies in Immune Evasion in Cancer

**DOI:** https://doi.org/10.36811/ijho.2021.110019

IJHO: October-2021: Page No: 414-457

- 459. Gobato R, Heidari, Valverde LF.
  2021. ACTG Based on Silicon Getting News Structures Asi, Csi, Tsi and Gsi. Arch Biomed Eng & Biotechnol. 5: 1-2.
- 460. Heidari A, Gobato R. 2021. A Biospectroscopic Assignment Technique for Gum Cancer Cell Membrane DNA/RNA Reconstituted in Magnetically Aligned Gum Cancer Cells for Solid-State NMR Analysis of Gum Cancer Cell Membrane DNA/RNA and Nucleic Acids Aggregates by Proton Detected Spectroscopy. Glob Imaging Insights. 6: 1-2.
- 461. Heidari A, Gobato R. 2021. Integrated Analysis of the Conformation of a DNA/RNA-Linked Spin Label by Combining NMR Ensembles and Molecular Dynamics Simulations Provides More Realistic Models of DNA/RNA Structures in Gum Cancer Cells Using Optimization of NMR Spectroscopy of Encapsulated DNA/RNA Dissolved in Gum Cancer Cells. Glob Imaging Insights. 6: 1-3.
- 462. Heidari A, Gobato R, Valverde LF.
  2021. Modelling and Simulation of 13C, 15N, 17O NMR Chemical Shifts, 17O and 14N Electric Field Gradients and Measurement of 13C and 15N Chemical Shifts in DNA/RNA of Human Gum Cancer Cells, Tissues and Tumors Using NMR Biospectroscopic Profiling for Novel Systems Diagnostics. SGlob Imaging Insights. 6: 1-2.
- 463. Heidari A, Gobato R, Valverde LF.
  2021. Theoretical 13C Chemical Shift, 14N, and 2H Quadrupole Coupling -Constant Studies of Hydrogen Bonding for Measurement and Calculation of 13C and 15N NMR Chemical-Shift Tensors in DNA/RNA of Gum Cancer Cells Identification: A Powerful Alternative. Glob Imaging Insights. 6: 1-2.
- 464. Heidari A, Gobato R, Valverde LF.
  2021. Conformational Study of a Strained DNA/RNA by Dynamic 1H NMR Biospectroscopy and Computational Methods for Molecular Modelling, Simulation and Biopectroscopic Studies of DNA/RNA of

Gum Cancer Cells. Dent Oral Maxillofac Res. 7: 1-2.

- 465. Heidari A, Gobato R, Valverde LF. 2020. Current Advances in the Application of Dynamic NMR Studies of DNA/RNA Intraand Inter Molecular Effect on Ring Inversion Rate Constants for Molecular Diagnosis of Gum Cancer. Dent Oral Maxillofac Res. 7: 1-2.
- 466. Heidari A, Gobato R, Valverd LF. 2021. NMR-Based Metabolomics Approach to Target Biomarkers Such as DNA/RNA for New Frontiers of Diagnostic Strategies for Prevention, Prognosis, Diagnosis and Treatment of Gum Caner Tumor Metabolism. Dent Oral Maxillofac Res. 7: 1-2.
- 467. Heidari A, Gobato R, Valverde LF.
  2021. Spherical Tensor Analysis of Nuclear Magnetic Resonance Signals for Understanding Chemical Shielding Tensors of DNA/RNA in Gum Cancer Cells Using Group Theory, MO Analysis, and Modern Density-Functional Theory. Dent Oral Maxillofac Res. 7: 1-2.
- 468. Heidari A, Hotz M, MacDonald N. 2021. Introducing Cadmium Oxide (CdO) Smart Nanoparticles as Detector for Diagnosis of Signals from Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations. International Journal of Advanced Engineering and Science. 10: 20-64.
- 469. Heidari A, Hotz M, MacDonald N.
  2021. Iridium (IV) Oxide (IrO<sub>2</sub>) Nanoparticles Shut Down Cancer Growth Using Iridium (IV) Oxide (IrO<sub>2</sub>) Nanoparticles to Deliver a Nucleic Acid (DNA/RNA) into Tumor Cells under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education (PJSE). 7: 200-235.
- 470. Heidari A, Hotz M, MacDonald N.
  2021. Emerging Use of Osmium Dioxide (OsO<sub>2</sub>) and Osmium Tetroxide (OsO<sub>4</sub>) Nanoparticles in Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management of Cancer under Synchrotron and



Evasion in Cancer DOI: https://doi.org/10.36811/ijho.2021.110019 IJH

IJHO: October-2021: Page No: 414-457

Synchrocyclotron Radiations. Parana Journal of Science and Education (PJSE). 7: 163-199.

- 471. [Heidari A, Hotz M, MacDonald N. 2021. "Biopolymer Rhenium (IV) Oxide (ReO<sub>2</sub>), Rhenium Trioxide (ReO<sub>3</sub>) and Rhenium (VII) Oxide (Re<sub>2</sub>O<sub>7</sub>) Nanoparticles for Targeted Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education (PJSE). 7: 126-162.
- 472. Heidari A, Hotz M, MacDonald N.
  2021. Biocompatible Core–Shell Advanced Magnetic Rhodium (III) Oxide or Rhodium Sesquioxide (Rh<sub>2</sub>O<sub>3</sub>) and Rhodium (IV) Oxide (RhO<sub>2</sub>) Nanoparticles for Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education (PJSE). 7: 89-125.
- 473. Heidari A, Hotz M, MacDonald N. 2021. Targeted Biopolymeric Ruthenium (IV) Oxide (RuO<sub>2</sub>) and Ruthenium (VIII) Oxide (RuO<sub>4</sub>) Nanoparticles Loaded with Cetuximab and Decorated with Somatostatin Analogue to Colon Cancer under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education (PJSE). 7: 52-88.
- 474. Heidari A, Hotz M, MacDonald N. 2021. Future Studies of Cancer Immunotherapy Using Cadmium Oxide (CdO) Nanoparticles as Anti–Cancer Nano Drug Delivery Could Be the Future of Targeted Cancer Therapies under Synchrotron and Synchrocyclotron Radiations. Parana Journal of Science and Education (PJSE). 7: 15-51.
- 475. Heidari A. 2021. Removal of Cancer Cells Using Thin Layers of Cadmium Oxide (CdO)–DNA/RNA Sandwiched Complex Composite Plasmonic Nanostructure under Synchrotron Radiation. Organic Polymer Material Research. 3: 1-15.
- 476. Gobato R, Heidari A, Valverde LF. Infrared Spectrum for the New Exobiological Nanomolecules Asi, Csi, Tsi and Gsi. Sumerianz Journal of Scientific Research. 4: 25-31.

- 477. Heidari A. 2020. Study of Physical Properties of Cadmium Oxide (CdO) and CdO/DNA/RNA Nanostructures Thin Layers Produced by Spray Pyrolysis Technique for Manufacturing Cadmium Oxide (CdO) Nanoparticles and Evaluation of the Effect of DNA/RNA Doping on Their Optical Characteristics. Adv Sci Eng Med. 12: 1224-1230.
- 478. Heidari A. 2020. Vibrational Biospectroscopic Study on Biomedical and Clinical Engineering of Cancer Cells Fingerprints. Adv Sci Eng Med. 12: 1272-1284.
- 479. Heidari A. 2020. Effect of Temperature on DNA/RNA–Cadmium Oxide (CdO) Complex Nanoparticles Produced by Synchrotronic Laser Ablation Method in the Cancer Cells. Adv Sci Eng Med. 12: 1315-1322.
- 480. Heidari A. 2021. Cadmium Oxide (CdO)–DNA/RNA Sandwiched Complex Composite Plasmonic Nanostructure in Cancer Cells under Synchrotron Radiation. Nano Prog. 3: 35-47.
- 481. Heidari A, Hotz M, MacDonald N. 2021. The Effect of Solution Molarity on the Structural, Morphological, Optical and Electrical Properties of Nanostructured Cadmium Oxide (CdO) Nano Thin Films as Anti–Cancer Nano Drug in Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations. Int J Hematol Oncol. 4: 16-60.
- 482. Heidari A, Hotz M, MacDonald N. 2021. Annealing Effects on the Interband Transition and Optical Constants of Ruthenium (IV) Oxide (RuO<sub>2</sub>) and Ruthenium (VIII) Oxide (RuO<sub>4</sub>) Nano Thin Films in Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations. Int J Hematol Oncol. 4: 61-105.
- 483. Heidari A, Hotz M, MacDonald N. 2021. Rhodium (III) Oxide or Rhodium Sesquioxide (Rh<sub>2</sub>O<sub>3</sub>) and Rhodium (IV) Oxide (RhO<sub>2</sub>) Effect on the Stop Growth of Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations. Int J Hematol Oncol. 4: 106-149.



Evasion in Cancer DOI: https://doi.org/10.36811/ijho.2021.110019 IJH

IJHO: October-2021: Page No: 414-457

- 484. Heidari A, Hotz M, MacDonald N. 2021. Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO<sub>2</sub>), Rhenium Trioxide (ReO<sub>3</sub>) and Rhenium (VII) Oxide (Re<sub>2</sub>O<sub>7</sub>) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations. Int J Hematol Oncol. 4: 150-194.
- 485. Heidari A, Hotz M, MacDonald N. 2021. Catalytic Effectiveness of Synchrotron and Synchrocyclotron Radiations on Osmium Dioxide (OsO<sub>2</sub>) and Osmium Tetroxide (OsO<sub>4</sub>) Nano Capsules Delivery in DNA/RNA of Cancer Cells. Int J Hematol Oncol. 4: 195-238.
- 486. Heidari A, Hotz M, MacDonald N. 2021. Advanced Studies on the Effect of Transition Metal Doped Iridium (IV) Oxide (IrO<sub>2</sub>) Nano Thin Films in Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations. Int J Hematol Oncol. 4: 239-282.
- 487. Heidari A, Hotz M, MacDonald N. 2021. Cadmium Oxide (CdO) Nanoparticles– Based Drug Delivery in Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management and its Role and Application in Overcoming Drug Resistance under Synchrotron and Synchrocyclotron Radiations. International Journal of Advanced Chemistry. 9: 80-98.
- 488. Heidari A, Hotz M, MacDonald N. 2021. Active Targeting of Rhenium (IV) Oxide (ReO<sub>2</sub>), Rhenium Trioxide (ReO<sub>3</sub>) and Rhenium (VII) Oxide (Re<sub>2</sub>O<sub>7</sub>) Nanoparticles as Cancer Therapeutics Swell–up to Kill Cancer Cells under Synchrotron and Synchrocyclotron Radiations. International Journal of Advanced Chemistry. 9: 103-121.
- 489. Heidari A, Hotz M, MacDonald N. 2021. Ruthenium (IV) Oxide (RuO<sub>2</sub>) and Ruthenium (VIII) Oxide (RuO<sub>4</sub>) Smart Nano Particles, Nano Capsules and Nanoclusters Influence, Impression and Efficacy in Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management under Synchrotron and Synchrocyclotron Radiations. American Journal of Materials Engineering and Technology. 9: 1-20.

490. Heidari A, Hotz M, MacDonald N. 2021. Cadmium Oxide (CdO) Smart Nano Particles, Nano Capsules and Nanoclusters Influence, Impression and Efficacy in Cancer Prevention, Prognosis, Diagnosis, Imaging, Screening, Treatment and Management under Synchrotron and Synchrocyclotron Radiations. Journal of Materials Physics and Chemistry. 9: 26-46.

#### **Authors' Brief Biographies**



Prof. Dr. Alireza Heidari, Ph.D., D.Sc. is a Full Distinguished Professor and Academic Tenure of Chemistry and also Enrico Fermi Distinguished Chair in Molecular Spectroscopy at California South University (CSU), Irvine, California, USA. He has got his Ph.D. and D.Sc. degrees from California South University (CSU), Irvine, California, USA. Furthermore, he has double postdocs in Project Management. Oncology, Human Cancer Tissues and Synchrotron Radiation from Monash University, Melbourne, Victoria, Australia and also in Nanochemistry and Molecular Electronic-Structure Modern Computations Theory from California South



Evasion in Cancer DOI: https://doi.org/10.36811/ijho.2021.110019 IJH

IJHO: October-2021: Page No: 414-457

University (CSU), Irvine, California, USA. His research interests include Biophysical Spectroscopy. Chemistry. Biomolecular Quantum Chemistry, Nanochemistry, Modern Electronic Structure Computations, Theoretical Chemistry, Mathematical Computational Chemistry, Chemistry, Vibrational Spectroscopy, Molecular Modelling, Ab initio & Density Functional Methods, Molecular Structure, Biochemistry, Pharmaceutical Molecular Simulation. Chemistry, Medicinal Chemistry, Oncology, Synchrotron Radiation, Synchrocyclotron Radiation, LASER, Anti-Cancer Nano Drugs, Nano Drugs Delivery, ATR-FTIR Spectroscopy, Raman Spectroscopy, Intelligent Molecules, Molecular Dynamics, Molecular Biosensors, Biomarkers, Diagnostics, Numerical Chemistry, Nucleic Acids, DNA/RNA Monitoring, DNA/RNA Hypermethylation & Hypomethylation, Human Cancer Tissues, Human Cancer Cells, Tumors, Cancer Tissues, Cancer Cells, etc. He has participated at more than five hundred reputed international conferences, seminars, congresses, symposiums and forums around the world as yet. Also, he possesses many published articles in Science Citation Index (SCI)/International Scientific Indexing (ISI), Medline/PubMed and Scopus Journals. It should be noted that he has visited many universities or scientific and academic research institutes in different countries such as United States, United Kingdom, Canada, Australia, New Zealand, Scotland, Ireland, Belgium, Netherlands, Denmark, Luxembourg, Romania, Greece, Russia, Estonia, Ukraine, Turkey, France, Swiss, Germany, Sweden, Norway, Italy, Austria, Czech Republic, Hungary, Poland, South Africa, Egypt, Brazil, Spain, Portugal, Mexico, Japan, Singapore, Malaysia, Indonesia. Thailand, Taiwan, Hong Kong, Philippines, South Korea, China, India, Kingdom of Saudi Arabia, Jordan, Qatar, United Arab Emirates, etc. as research fellow, sabbatical and volunteer researcher or visitor and so on heretofore. He has a history of several years of teaching for college students and various

disciplines and trends in different universities. Moreover, he has been a senior advisor in various industry and factories. He is expert in many computer programs and programming languages. Hitherto, he has authored more than twenty books and book chapters in different fields of Chemistry. Syne, he has been awarded more than one thousand reputed international awards, prizes, scholarships and honors. Heretofore, he has multiple editorial duties in many reputed international and peerreviewed journals, books and publishers. Hitherward, he is a member of more than five hundred reputed international academicscientific-research institutes around the world. It should be noted that he is currently the President of the American International Standards Institute (AISI), Irvine, California, USA and also Head of Cancer Research Institute (CRI) and Director of the BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.



**Elena Locci** is a Ph.D. Candidate under the Supervision of Professor Alireza Heidari at Cancer Research Institute (CRI) and BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.



DOI: https://doi.org/10.36811/ijho.2021.110019 IJHO: October-2021: Page No: 414-457



**Dr. Silvia Raymond, Ph.D., D.Sc.** is the current Junior Postdoctoral Research Fellows under the Supervision of Professor Alireza Heidari at Cancer Research Institute (CRI) and BioSpectroscopy Core Research Laboratory at California South University (CSU), Irvine, California, USA.